从零开始开发IM(即时通信)服务端(二)

好消息:IM1.0.0版本已经上线啦,支持特性html

  • 私聊发送文本/文件
  • 已发送/已送达/已读回执
  • 支持使用ldap登陆
  • 支持接入外部的登陆认证系统
  • 提供客户端jar包,方便客户端开发

github连接: https://github.com/yuanrw/IMnode

本篇将带你们从零开始搭建一个轻量级的IM服务端,IM的总体设计思路和架构在个人上篇博客中已经讲过了,没看过的同窗请点击从零开始开发IM(即时通信)服务端git

这篇将给你们带来更多的细节实现。我将从三个方面来阐述如何构建一个完整可靠的IM系统。github

  1. 可靠性
  2. 安全性
  3. 存储设计

可靠性

什么是可靠性?对于一个IM系统来讲,可靠的定义至少是不丢消息消息不重复不乱序,知足这三点,才能说有一个好的聊天体验。数据库

不丢消息

咱们先从不丢消息开始讲起。数组

首先复习一下上一篇设计的服务端架构
im-structure.png安全

咱们先从一个简单例子开始思考:当Alice给Bob发送一条消息时,可能要通过这样一条链路:
route服务器

  1. client-->connecter
  2. connector-->transfer
  3. transfer-->connector
  4. connector-->client

在这整个链路中的每一个环节都有可能出问题,虽然tcp协议是可靠的,可是它只能保证链路层的可靠,没法保证应用层的可靠。网络

例如在第一步中,connector收到了从client发出的消息,可是转发给transfer失败,那么这条消息Bob就没法收到,而Alice也不会意识到消息发送失败了。session

若是Bob状态是离线,那么消息链路就是:

  1. client-->connector
  2. connector-->transfer
  3. transfer-->mq

若是在第三步中,transfer收到了来自connector的消息,可是离线消息入库失败,
那么这个消息也是传递失败了。
为了保证应用层的可靠,咱们必需要有一个ack机制,使发送方可以确认对方收到了这条消息。

具体的实现,咱们模仿tcp协议作一个应用层的ack机制。

tcp的报文是以字节(byte)为单位的,而咱们以message单位。
ack
发送方每次发送一个消息,就要等待对方的ack回应,在ack确认消息中应该带有收到的id以便发送方识别。

其次,发送方须要维护一个等待ack的队列。 每次发送一个消息以后,就将消息和一个计时器入队。

另外存在一个线程一直轮询队列,若是有超时未收到ack的,就取出消息重发。

超时未收到ack的消息有两种处理方式:

  1. 和tcp同样不断发送直到收到ack为止。
  2. 设定一个最大重试次数,超过这个次数还没收到ack,就使用失败机制处理,节约资源。例如若是是connector长时间未收到client的ack,那么能够主动断开和客户端的链接,剩下未发送的消息就做为离线消息入库,客户端断连后尝试重连服务器便可。

不重复、不乱序

有的时候由于网络缘由可能致使ack收到较慢,发送方就会重复发送,那么接收方必须有一个去重机制。
去重的方式是给每一个消息增长一个惟一id。这个惟一id并不必定是全局的,只须要在一个会话中惟一便可。例如某两我的的会话,或者某一个群。若是网络断连了,从新链接后,就是新的会话了,id会从新从0开始。

接收方须要在当前会话中维护收到的最后一个消息的id,叫作lastId
每次收到一个新消息, 就将id与lastId做比较看是否连续,若是不连续,就放入一个暂存队列 queue中稍后处理。

例如:

  • 当前会话的lastId=1,接着服务器收到了消息msg(id=2),能够判断收到的消息是连续的,就处理消息,将lastId修改成2。

  • 可是若是服务器收到消息msg(id=3),就说明消息乱序到达了,那么就将这个消息入队,等待lastId变为2后,(即服务器收到消息msg(id=2)并处理完了),再取出这个消息处理。

所以,判断消息是否重复只须要判断msgId>lastId && !queue.contains(msgId)便可。若是收到重复的消息,能够判断是ack未送达,就再发送一次ack。

接收方收到消息后完整的处理流程以下:
offer.png

伪代码以下:

class ProcessMsgNode{
    /**
     * 接收到的消息
     */
    private Message message;
    /**
     * 处理消息的方法
     */
    private Consumer<Message> consumer;
}

public CompletableFuture<Void> offer(Long id,Message     message,Consumer<Message> consumer) {
    if (isRepeat(id)) {
    //消息重复
        sendAck(id);
        return null;
    }
    if (!isConsist(id)) {
    //消息不连续
        notConsistMsgMap.put(id, new ProcessMsgNode(message, consumer));
        return null;
    }
    //处理消息
    return process(id, message, consumer);
}

private CompletableFuture<Void> process(Long id, Message message, Consumer<Message> consumer) {
    return CompletableFuture
        .runAsync(() -> consumer.accept(message))
        .thenAccept(v -> sendAck(id))
        .thenAccept(v -> lastId.set(id))
        .thenComposeAsync(v -> {
            Long nextId = nextId(id);
            if (notConsistMsgMap.containsKey(nextId)) {
                //队列中有下个消息
                ProcessMsgNode node = notConsistMsgMap.get(nextId);
                return process(nextId, node.getMessage(), consumer);
            } else {
                //队列中没有下个消息
                CompletableFuture<Void> future = new CompletableFuture<>();
                future.complete(null);
                return future;
            }
        })
        .exceptionally(e -> {
            logger.error("[process received msg] has error", e);
            return null;
        });
}

安全性

不管是聊天记录仍是离线消息,确定都会在服务端存储备份,那么消息的安全性,保护客户的隐私也相当重要。
所以全部的消息都必需要加密处理。
在存储模块里,维护用户信息和关系链有两张基础表,分别是im_user用户表和im_relation关系链表。

  • im_user表用于存放用户常规信息,例如用户名密码等,结构比较简单。
  • im_relation表用于记录好友关系,结构以下:
CREATE TABLE `im_relation` (
  `id` bigint(20) COMMENT '关系id',
  `user_id1` varchar(100) COMMENT '用户1id',
  `user_id2` varchar(100) COMMENT '用户2id',
  `encrypt_key` char(33) COMMENT 'aes密钥',
  `gmt_create` timestamp DEFAULT CURRENT_TIMESTAMP,
  `gmt_update` timestamp DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP, 
  PRIMARY KEY (`id`),
  UNIQUE KEY `USERID1_USERID2` (`user_id1`,`user_id2`)
);
  • user_id1user_id2是互为好友的用户id,为了不重复,存储时按照user_id1<user_id2的顺序存,而且加上联合索引。
  • encrypt_key是随机生成的密钥。当客户端登陆时,就会从数据库中获取该用户的全部的relation,存在内存中,以便后续加密解密。
  • 当客户端给某个好友发送消息时,取出内存中该关系的密钥,加密后发送。一样,当收到一条消息时,取出相应的密钥解密。

客户端完整登陆流程以下:
login process

  1. client调用rest接口登陆。
  2. client调用rest接口获取该用户全部relation
  3. client向connector发送greet消息,通知上线。
  4. connector拉取离线消息推送给client。
  5. connector更新用户session。

那为何connector要先推送离线消息再更新session呢?咱们思考一下若是顺序倒过来会发生什么:

  1. 用户Alice登陆服务器
  2. connector更新session
  3. 推送离线消息
  4. 此时Bob发送了一条消息给Alice

若是离线消息还在推送的过程当中,Bob发送了新消息给Alice,服务器获取到Alice的session,就会马上推送。这时新消息就有可能夹在一堆离线消息当中推过去了,那这时,Alice收到的消息就乱序了。

而咱们必须保证离线消息的顺序在新消息以前。

那么若是先推送离线消息,以后才更新session。在离线消息推送的过程当中,Alice的状态就是“未上线”,这时Bob新发送的消息只会入库im_offlineim_offline表中的数据被读完以后才会“上线”开始接受新消息。这也就避免了乱序。

存储设计

存储离线消息

当用户不在线时,离线消息必然要存储在服务端,等待用户上线再推送。理解了上一个小节后,离线消息的存储就很是容易了。增长一张离线消息表im_offline,表结构以下:

CREATE TABLE `im_offline` (
  `id` int(11) COMMENT '主键',
  `msg_id` bigint(20) COMMENT '消息id',
  `msg_type` int(2) COMMENT '消息类型',
  `content` varbinary(5000) COMMENT '消息内容',
  `to_user_id` varchar(100) COMMENT '收件人id',
  `has_read` tinyint(1) COMMENT '是否阅读',
  `gmt_create` timestamp COMMENT '建立时间',
  PRIMARY KEY (`id`)
);

msg_type用于区分消息类型(chat,ack),content加密后的消息内容以byte数组的形式存储。
用户上线时按照条件to_user_id=用户id拉取记录便可。

防止离线消息重复推送

咱们思考一下多端登陆的状况,Alice有两台设备同时登录,在这种并发的状况下,咱们就须要某种机制来保证离线消息只被读取一次。

这里利用CAS机制来实现:

  1. 首先取出全部has_read=false的字段。
  2. 检查每条消息的has_read值是否为false,若是是,则改成true。这是原子操做。
update im_offline set has_read = true where id = ${msg_id} and has_read = false
  1. 修改为功则推送,失败则不推送。

相信到这里,同窗们已经能够本身动手搭建一个完整可用的IM服务端了。更多问题欢迎评论区留言~~

IM1.0.0版本已上线,github连接:
https://github.com/yuanrw/IM
以为对你有帮助请点个star吧~!

相关文章
相关标签/搜索