Time Limit: 1000MS | Memory Limit: 65536K | |
---|---|---|
Total Submissions: 43861 | Accepted: 14902 |
Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, so she wants to get back as quickly as possible.ios
Farmer John's field has N (2 <= N <= 1000) landmarks in it, uniquely numbered 1..N. Landmark 1 is the barn; the apple tree grove in which Bessie stands all day is landmark N. Cows travel in the field using T (1 <= T <= 2000) bidirectional cow-trails of various lengths between the landmarks. Bessie is not confident of her navigation ability, so she always stays on a trail from its start to its end once she starts it.算法
Given the trails between the landmarks, determine the minimum distance Bessie must walk to get back to the barn. It is guaranteed that some such route exists.数组
* Line 1: Two integers: T and Napp
* Lines 2..T+1: Each line describes a trail as three space-separated integers. The first two integers are the landmarks between which the trail travels. The third integer is the length of the trail, range 1..100.ide
* Line 1: A single integer, the minimum distance that Bessie must travel to get from landmark N to landmark 1.学习
5 5 1 2 20 2 3 30 3 4 20 4 5 20 1 5 100
90
INPUT DETAILS:优化
There are five landmarks.ui
OUTPUT DETAILS:spa
Bessie can get home by following trails 4, 3, 2, and 1.code
思路:
经典最短路径板子题(模板题)
如今用 Dijkstra算法, spfa(bellman ford)算法, Floyd算法, 深搜DFS都写一遍回顾下
使用快读(代码未写出)之后仍T,说明DFS作了不少无用的搜索,在优化搜索的程度上能够进阶学习A*搜索算法
#include<iostream> #include<cstring> #include<algorithm> using namespace std; #define ms(a,b) memset(a,b,sizeof(b)); const int inf = 0x3f3f3f3f; const int N = 1000 + 10; int map[N][N]; bool book[N]; int minn , n; void dfs(int index,int step) { if (index == 1) { minn = min(minn, step); return; } if (step > minn)return; for (int i = 1; i <= n; ++i) { if (!book[i] && map[index][i] != inf) { book[i] = 1; dfs(i, step + map[index][i]); book[i] = 0; } } } int main() { ios::sync_with_stdio(false); cin.tie(0); int t, t1, t2, w; while (cin >> t >> n) { minn = inf; ms(map,inf); ms(book,false); //memset(map, inf, sizeof(map)); //memset(book, false, sizeof(book)); while (t--) { cin >> t1 >> t2 >> w; map[t1][t2] = map[t2][t1] = min(map[t1][t2], w); } book[n] = 1; dfs(n, 0); cout << minn << endl; } return 0; }
#include <stdio.h> #include <string.h> #include <string> #include <iostream> #include <stack> #include <queue> #include <vector> #include <algorithm> #define mem(a,b) memset(a,b,sizeof(a)) using namespace std; const int inf=1<<29; int map[1010][1010];//map[i][j]表示从i-->j的距离 int dist[1010];//dist[i]从v1到i的距离 int vis[1010];//标记有没有被访问过 void dijkstra(int n) { int k,min; for(int i=1; i<=n; i++) { dist[i]=map[1][i]; vis[i]=0; } for(int i=1; i<=n; i++)//遍历顶点 { k=0; min=inf; for(int j=1; j<=n; j++) if(vis[j]==0&&dist[j]<min) { min=dist[j]; k=j; } vis[k]=1; for(int j=1; j<=n; j++) if(vis[j]==0&&dist[k]+map[k][j]<dist[j]) dist[j]=dist[k]+map[k][j];//若是找到了通路就加上 } return; } int main() { int t,n,a,b,w; while(~scanf("%d%d",&t,&n)) { mem(map,0); mem(vis,0); mem(dist,0); for(int i=1; i<=n; i++) for(int j=1; j<=n; j++) map[i][j]=inf;//初始化为无穷大 for(int i=1; i<=t; i++) { scanf("%d%d%d",&a,&b,&w); if(w<map[a][b]) { map[a][b]=w; map[b][a]=map[a][b];//创建无向图 }//这里是判断是否有重边,应为两点之间的路,未必只有一条。 } dijkstra(n); printf("%d\n",dist[n]); } return 0; }
#include<cstring> #include <iostream> #include <algorithm> #define mem(a,b) memset(a,b,sizeof(a)) using namespace std; const int inf = 1 << 29; int map[1010][1010];//map[i][j]表示从i-->j的距离 int main() { int t, n, a, b, w; while (~scanf("%d%d", &t, &n)) { mem(map, 0); //初始化 for (int i = 1; i <= n; i++) for (int j = 1; j <= n; j++) if (i == j) map[i][j] = 0; else map[i][j] = inf;//初始化为无穷大 //创建图 for (int i = 1; i <= t; i++){ scanf("%d%d%d", &a, &b, &w); map[a][b] = map[b][a] = min(w, map[a][b]);//创建无向图 }//这里是判断是否有重边,应为两点之间的路,未必只有一条。 //弗洛伊德(Floyd)核心语句 for (int k = 1; k <= n; k++) for (int i = 1; i <= n; i++) for (int j = 1; j <= n; j++) if (map[i][k] + map[k][j] < map[i][j]) map[i][j] = map[i][k] + map[k][j]; printf("%d\n", map[1][n]); } return 0; }
#include <iostream> #include <vector> #include <algorithm> #include <cstdio> typedef long long ll; //typedef unsigned long long ull; using namespace std; const int N = 1005, T = 4005; int n, t; int dis[N]; vector<vector<int> > gra(T, vector<int> (3)); //邻接表存储图 const int inf = 1 << 29; void bellmanford() { for (int i = 1; i <= n; ++i) { dis[i] = inf; } dis[1] = 0; for (int i = 1; i < n; ++i) { for (int j = 1; j <= t * 2; ++j) { dis[gra[j][1]] = min(dis[gra[j][1]], dis[gra[j][0]] + gra[j][2]); } } } int main() { scanf("%d%d", &t, &n); for (int i = 0, index = 1; i < t; ++i) { int a, b, c; scanf("%d%d%d", &a, &b, &c); gra[index][0] = a, gra[index][1] = b, gra[index][2] = c; ++index; gra[index][1] = a, gra[index][0] = b, gra[index][2] = c; ++index; } bellmanford(); printf("%d\n", dis[n]); return 0; }
//spfa #include <vector> #include <algorithm> #include <cstdio> #include <queue> using namespace std; const int N = 1005, T = 4005; int n, t; int dis[N], vis[N]; //dis数组存单元源点到其余各个点的距离 //vis存顶点v是否已经在队列当中以减小没必要要的操做 vector<int> to[N], edge[N]; //邻接表分别存以i为下标的邻接的顶点和权值 const int inf = 1 << 29; void spfa() { queue<int> q; for (int i = 1; i <= n; ++i) { dis[i] = inf; } dis[1] = 0; q.push(1); while (!q.empty()) { int u = q.front(); q.pop(); vis[u] = false; for (int i = 0; i < to[u].size(); ++i) { //遍历邻接的顶点 int v = to[u][i], w = edge[u][i]; if (dis[v] > dis[u] + w) { dis[v] = dis[u] + w; if (!vis[v]) { vis[v] = true; q.push(v); } } } } } int main() { scanf("%d%d", &t, &n); for (int i = 0; i < t; ++i) { int a, b, c; scanf("%d%d%d", &a, &b, &c); //无向图 to[a].push_back(b); edge[a].push_back(c); to[b].push_back(a); edge[b].push_back(c); } spfa(); printf("%d\n", dis[n]); return 0; }
写完几种模板之后分析一下时间复杂度