SQL Expression Language对原生SQL语言进行了简单的封装
两大模块SQLAlchemy Core and ORM:html
Core:提供执行SQL Expression Language的接口python
ORMmysql
安装:SQLAlchemy及相关数据库驱动pip install sqlalchemy pymysql
sql
数据库链接字符串格式:请参考这里数据库
mysql://username:password@hostname/database postgresql://username:password@hostname/database sqlite:////absolute/path/to/database oracle://scott:tiger@127.0.0.1:1521/orcl
好比SQLite以下:json
from sqlalchemy import create_engine engine = create_engine('sqlite:///cookies.db') engine2 = create_engine('sqlite:///:memory:') engine3 = create_engine('sqlite:////home/cookiemonster/cookies.db') engine4 = create_engine('sqlite:///c:\\Users\\cookiemonster\\cookies.db')
注意:create_engine函数返回以一个engine实例,可是不会当即获取数据库链接,直到在engine上进行操做如查询时才会去获取connection
安全
关于MySQL空闲链接8小时自动关闭的解决方案:传入 pool_recycle=3600参数
cookie
from sqlalchemy import create_engine engine = create_engine('mysql+pymysql://cookiemonster:chocolatechip@mysql01.monster.internal/cookies', pool_recycle=3600)
create_engine其他的一些参数:oracle
echo:是否log打印执行的sql语句及其参数。默认为False函数
encoding:默认utf-8
isolation_level:隔离级别
pool_recycle:指定链接回收间隔,这对于MySQL链接的8小时机制特别重要。默认-1
获取链接
from sqlalchemy import create_engine engine = create_engine('mysql+pymysql://cookiemonster:chocolatechip' \ '@mysql01.monster.internal/cookies', pool_recycle=3600) connection = engine.connect()
四种类型集合:
• Generic
• SQL standard
• Vendor specific
• User defined
SQLAlchemy定义了不少generic types以兼容不一样数据库。这些类型都定义在sqlalchemy.types
模块中,为了方便也能够从sqlalchemy直接导入这些类型。
类型对应表以下:
SQLAlchemy | Python | SQL |
---|---|---|
BigInteger | int | BIGINT |
Boolean | bool | BOOLEAN or SMALLINT |
Date | datetime.date | DATE (SQLite: STRING) |
DateTime | datetime.datetime | DATETIME (SQLite: STRING) |
Enum | str | ENUM or VARCHAR |
Float | float or Decimal | FLOAT or REAL |
Integer | int | INTEGER |
Interval | datetime.timedelta | INTERVAL or DATE from epoch |
LargeBinary | byte | BLOB or BYTEA |
Numeric | decimal.Decimal | NUMERIC or DECIMAL |
Unicode | unicode | UNICODE or VARCHAR |
Text | str | CLOB or TEXT |
Time | datetime.time | DATETIME |
若是这些类型不能知足你,好比有些数据库支持json类型,那么你须要用到sqlalchemy.dialects
模块中对应数据库的类型。好比from sqlalchemy.dialects.postgresql import JSON
Metadata为了快速访问数据库。能够看做是不少Table对象的集合,还有一些关于engin,connection的信息。能够经过MetaData.tables
访问这些表对象字典
定义表对象以前须要先实例化Metadata:
from sqlalchemy import MetaData metadata = MetaData()
Table对象构建以下:第一个参数为名称,第二个参数为Metadata对象,后续参数为Column对象. Column对象参数为,名称,类型,及其他等
from sqlalchemy import Table, Column, Integer, Numeric, String, ForeignKey cookies = Table('cookies', metadata, Column('cookie_id', Integer(), primary_key=True), Column('cookie_name', String(50), index=True), Column('cookie_recipe_url', String(255)), Column('cookie_sku', String(55)), Column('quantity', Integer()), Column('unit_cost', Numeric(12, 2)) )
from datetime import datetime from sqlalchemy import DateTime users = Table('users', metadata, Column('user_id', Integer(), primary_key=True), Column('username', String(15), nullable=False, unique=True), Column('email_address', String(255), nullable=False), Column('phone', String(20), nullable=False), Column('password', String(25), nullable=False), Column('created_on', DateTime(), default=datetime.now), Column('updated_on', DateTime(), default=datetime.now, onupdate=datetime.now)
注意:这里default,onupdate属性是一个callable对象而不是直接值,好比datetime.now(),由于这样的话,就永远是这个值,而不是每一个实例实例化、更新时的时间了。
比较有用的就是onupdate
,每次更新时都会调用该方法或函数。
键和约束(Keys and Constraints)
键和约束既能够像上面那样经过kwargs定义在Column中,也能够在以后经过对象添加。相关类定义在基础的 sqlalchemy模块中,好比最经常使用的三个:from sqlalchemy import PrimaryKeyConstraint, UniqueConstraint, CheckConstraint
PrimaryKeyConstraint('user_id', name='user_pk'),它也支持同时定义多个造成联合主键。 UniqueConstraint('username', name='uix_username') CheckConstraint('unit_cost >= 0.00', name='unit_cost_positive')
索引(Index)
from sqlalchemy import Index Index('ix_cookies_cookie_name', 'cookie_name')
这个定义须要放置在Table构造器中。也能够在以后定义,好比Index('ix_test', mytable.c.cookie_sku, mytable.c.cookie_name))
关联关系和外键约束(Relationships and ForeignKeyConstraints)
from sqlalchemy import ForeignKey orders = Table('orders', metadata, Column('order_id', Integer(), primary_key=True), Column('user_id', ForeignKey('users.user_id')), Column('shipped', Boolean(), default=False) ) line_items = Table('line_items', metadata, Column('line_items_id', Integer(), primary_key=True), Column('order_id', ForeignKey('orders.order_id')), Column('cookie_id', ForeignKey('cookies.cookie_id')), Column('quantity', Integer()), Column('extended_cost', Numeric(12, 2)) )
注意:这里ForeignKey用的是字符串参数(这些字符串对应的是数据库中的表名.列名),而非引用。这样隔离了模块间相互依赖
咱们也可使用:ForeignKeyConstraint(['order_id'], ['orders.order_id'])
建立或持久化表模式(Persisting the Tables)
经过示例代码咱们知道全部的Table定义,以及额外的模式定义都会与一个metadata对象关联。咱们能够经过这个metadata对象来建立表:
metadata.create_all(engine)
注意:默认状况下create_all不会
从新建立已有表,因此它能够安全地屡次调用,并且也很是友好地与数据库迁移库如Ablembic集成而不须要你进行额外手动编码。
本节代码完整以下:
from datetime import datetime from sqlalchemy import (MetaData, Table, Column, Integer, Numeric, String, DateTime, ForeignKey, create_engine) metadata = MetaData() cookies = Table('cookies', metadata, Column('cookie_id', Integer(), primary_key=True), Column('cookie_name', String(50), index=True), Column('cookie_recipe_url', String(255)), Column('cookie_sku', String(55)), Column('quantity', Integer()), Column('unit_cost', Numeric(12, 2)) ) users = Table('users', metadata, Column('user_id', Integer(), primary_key=True), Column('customer_number', Integer(), autoincrement=True), Column('username', String(15), nullable=False, unique=True), Column('email_address', String(255), nullable=False), Column('phone', String(20), nullable=False), Column('password', String(25), nullable=False), Column('created_on', DateTime(), default=datetime.now), Column('updated_on', DateTime(), default=datetime.now, onupdate=datetime.now) ) orders = Table('orders', metadata, Column('order_id', Integer(), primary_key=True), Column('user_id', ForeignKey('users.user_id')) ) line_items = Table('line_items', metadata, Column('line_items_id', Integer(), primary_key=True), Column('order_id', ForeignKey('orders.order_id')), Column('cookie_id', ForeignKey('cookies.cookie_id')), Column('quantity', Integer()), Column('extended_cost', Numeric(12, 2)) ) engine = create_engine('sqlite:///:memory:') metadata.create_all(engine)
ins = cookies.insert().values( cookie_name="chocolate chip", cookie_recipe_url="http://some.aweso.me/cookie/recipe.html", cookie_sku="CC01", quantity="12", unit_cost="0.50" ) print(str(ins))
固然你也能够这么作:
from sqlalchemy import insert ins = insert(cookies).values( cookie_name="chocolate chip", cookie_recipe_url="http://some.aweso.me/cookie/recipe.html", cookie_sku="CC01", quantity="12", unit_cost="0.50" )
上述编译成预编译语句以下:
INSERT INTO cookies (cookie_name, cookie_recipe_url, cookie_sku, quantity, unit_cost) VALUES (:cookie_name, :cookie_recipe_url, :cookie_sku, :quantity, :unit_cost)
实际过程会是以下ins对象内部会调用compile()方法编译成上述语句,而后将参数存储到ins.compile().params字典中。
接下来咱们经过前面获取的connection对象执行statement:
result = connection.execute(ins)
固然你也能够这么查询:
ins = cookies.insert() result = connection.execute( ins, cookie_name='dark chocolate chip', cookie_recipe_url='http://some.aweso.me/cookie/recipe_dark.html', cookie_sku='CC02', quantity='1', unit_cost='0.75' ) result.inserted_primary_key
inventory_list = [ { 'cookie_name': 'peanut butter', 'cookie_recipe_url': 'http://some.aweso.me/cookie/peanut.html', 'cookie_sku': 'PB01', 'quantity': '24', 'unit_cost': '0.25' }, { 'cookie_name': 'oatmeal raisin', 'cookie_recipe_url': 'http://some.okay.me/cookie/raisin.html', 'cookie_sku': 'EWW01', 'quantity': '100', 'unit_cost': '1.00' } ] result = connection.execute(ins, inventory_list)
注意:必定要确保全部字典参数拥有相同的keys
from sqlalchemy.sql import select s = select([cookies]) rp = connection.execute(s) results = rp.fetchall()
固然咱们也可使用字符串来代替:
s = select("""SELECT cookies.cookie_id, cookies.cookie_name, cookies.cookie_recipe_url, cookies.cookie_sku, cookies.quantity, cookies.unit_cost FROM cookies""")
connection.execute返回的rp变量是一个ResultProxy
对象(它是DBAPI中cursor对象的封装)。
咱们也能够这样写:
from sqlalchemy.sql import select s = cookies.select() rp = connection.execute(s) results = rp.fetchall()
ResultProxy使得查询结果能够经过index,name,or Column object访问列数据。例如:
first_row = results[0] first_row[1] #游标列索引从1开始,by index first_row.cookie_name # by name first_row[cookies.c.cookie_name] #by Column object.
你也能够迭代ResultProxy,以下:
rp = connection.execute(s) for record in rp: print(record.cookie_name)
ResultProxy其他可用来获取结果集的方法
first()
fetchone()
fetchall()
scalar():Returns a single value if a query results in a single record with one column.
keys() 获取列名
关于选择ResultProxy上述的方法的建议:
一、使用first()而不是fetchone()来获取单条记录,由于fetchone()调用以后仍然保留着打开的connections共后续使用,若是不当心的话很容易引发问题。
二、使用迭代方式获取全部结果,而不是fetchall(),更加省内存。
三、使用scalar()获取单行单列结果时须要注意,若是返回多于一行,它会抛出异常。
控制返回列的数目
s = select([cookies.c.cookie_name, cookies.c.quantity]) rp = connection.execute(s) print(rp.keys()) result = rp.first()
排序
s = select([cookies.c.cookie_name, cookies.c.quantity]) s = s.order_by(cookies.c.quantity) rp = connection.execute(s) for cookie in rp: print('{} - {}'.format(cookie.quantity, cookie.cookie_name)) #倒序desc from sqlalchemy import desc s = select([cookies.c.cookie_name, cookies.c.quantity]) s = s.order_by(desc(cookies.c.quantity))
限制返回结果集的条数
s = select([cookies.c.cookie_name, cookies.c.quantity]) s = s.order_by(cookies.c.quantity) s = s.limit(2) rp = connection.execute(s) print([result.cookie_name for result in rp])
在sqlalchemy.sql.func模块中
#sum from sqlalchemy.sql import func s = select([func.sum(cookies.c.quantity)]) rp = connection.execute(s) print(rp.scalar()) #count s = select([func.count(cookies.c.cookie_name)]) rp = connection.execute(s) record = rp.first() print(record.keys()) print(record.count_1) #字段名是自动生成的,<func_name>_<position>,能够设置别名的,看下面 #设置别名 s = select([func.count(cookies.c.cookie_name).label('inventory_count')]) rp = connection.execute(s) record = rp.first() print(record.keys()) print(record.inventory_count)
过滤
#where s = select([cookies]).where(cookies.c.cookie_name == 'chocolate chip') rp = connection.execute(s) record = rp.first() print(record.items()) #调用row对象的items()方法。 #like s = select([cookies]).where(cookies.c.cookie_name.like('%chocolate%')) rp = connection.execute(s) for record in rp.fetchall(): print(record.cookie_name)
能够在where中使用的子句元素
between(cleft, cright)
concat(column_two) Concatenate column with column_two
distinct()
in_([list])
is_(None) Find where the column is None (commonly used for Null checks with None)
contains(string) Find where the column has string in it (case-sensitive)
endswith(string) Find where the column ends with string (case-sensitive)
like(string) Find where the column is like string (case-sensitive)
startswith(string) Find where the column begins with string (case-sensitive)
ilike(string) Find where the column is like string (this is not case-sensitive)
固然还包括一系列的notxxx方法,好比notin_(),惟一的例外是isnot()
操做符
+,-,*,/,%
==,!=,<,>,<=,>=
AND,OR,NOT,因为python关键字的缘由,使用and_(),or_(),not_()来代替
+号还能够用于字符串拼接:
s = select([cookies.c.cookie_name, 'SKU-' + cookies.c.cookie_sku]) for row in connection.execute(s): print(row)
from sqlalchemy import cast s = select([cookies.c.cookie_name, cast((cookies.c.quantity * cookies.c.unit_cost), Numeric(12,2)).label('inv_cost')]) for row in connection.execute(s): print('{} - {}'.format(row.cookie_name, row.inv_cost))
注意:cast是另一个函数,容许咱们进行类型转换,上述转换是将数字转换为货币形式,和
print('{} - {:.2f}'.format(row.cookie_name, row.inv_cost)).这个行为一致。
from sqlalchemy import and_, or_, not_ s = select([cookies]).where( and_( cookies.c.quantity > 23, cookies.c.unit_cost < 0.40 ) ) for row in connection.execute(s): print(row.cookie_name) from sqlalchemy import and_, or_, not_ s = select([cookies]).where( or_( cookies.c.quantity.between(10, 50), cookies.c.cookie_name.contains('chip') ) ) for row in connection.execute(s): print(row.cookie_name)
from sqlalchemy import update u = update(cookies).where(cookies.c.cookie_name == "chocolate chip") u = u.values(quantity=(cookies.c.quantity + 120)) result = connection.execute(u) print(result.rowcount) s = select([cookies]).where(cookies.c.cookie_name == "chocolate chip") result = connection.execute(s).first() for key in result.keys(): print('{:>20}: {}'.format(key, result[key]))
from sqlalchemy import delete u = delete(cookies).where(cookies.c.cookie_name == "dark chocolate chip") result = connection.execute(u) print(result.rowcount) s = select([cookies]).where(cookies.c.cookie_name == "dark chocolate chip") result = connection.execute(s).fetchall() print(len(result))
join(),outerjoin()函数,select_from()函数
columns = [orders.c.order_id, users.c.username, users.c.phone, cookies.c.cookie_name, line_items.c.quantity, line_items.c.extended_cost] cookiemon_orders = select(columns) cookiemon_orders = cookiemon_orders.select_from(orders.join(users).join( line_items).join(cookies)).where(users.c.username == 'cookiemon') result = connection.execute(cookiemon_orders).fetchall() for row in result: print(row)
最终产生的SQL语句以下:
SELECT orders.order_id, users.username, users.phone, cookies.cookie_name, line_items.quantity, line_items.extended_cost FROM users JOIN orders ON users.user_id = orders.user_id JOIN line_items ON orders.order_id = line_items.order_id JOIN cookies ON cookies.cookie_id = line_items.cookie_id WHERE users.username = :username_1
outerjoin
columns = [users.c.username, func.count(orders.c.order_id)] all_orders = select(columns) all_orders = all_orders.select_from(users.outerjoin(orders)) all_orders = all_orders.group_by(users.c.username) result = connection.execute(all_orders).fetchall() for row in result: print(row)
表别名函数alias()
>>> manager = employee_table.alias('mgr') >>> stmt = select([employee_table.c.name], ... and_(employee_table.c.manager_id==manager.c.id, ... manager.c.name=='Fred')) >>> print(stmt) SELECT employee.name FROM employee, employee AS mgr WHERE employee.manager_id = mgr.id AND mgr.name = ?
columns = [users.c.username, func.count(orders.c.order_id)] all_orders = select(columns) all_orders = all_orders.select_from(users.outerjoin(orders)) all_orders = all_orders.group_by(users.c.username) result = connection.execute(all_orders).fetchall() for row in result: print(row)
def get_orders_by_customer(cust_name, shipped=None, details=False): columns = [orders.c.order_id, users.c.username, users.c.phone] joins = users.join(orders) if details: columns.extend([cookies.c.cookie_name, line_items.c.quantity, line_items.c.extended_cost]) joins = joins.join(line_items).join(cookies) cust_orders = select(columns) cust_orders = cust_orders.select_from(joins) cust_orders = cust_orders.where(users.c.username == cust_name) if shipped is not None: cust_orders = cust_orders.where(orders.c.shipped == shipped) result = connection.execute(cust_orders).fetchall() return result
返回的仍是ResultProxy对象
一、彻底采用原始SQL
result = connection.execute("select * from orders").fetchall() print(result)
二、部分采用原始SQL,text()函数
from sqlalchemy import text stmt = select([users]).where(text("username='cookiemon'")) print(connection.execute(stmt).fetchall())
SQLALchemy定义了不少异常。咱们经过关心:AttributeErrors,IntegrityErrors.等
为了进行相关试验与说明,请先执行下面这些语句
from datetime import datetime from sqlalchemy import (MetaData, Table, Column, Integer, Numeric, String, DateTime, ForeignKey, Boolean, create_engine, CheckConstraint) metadata = MetaData() cookies = Table('cookies', metadata, Column('cookie_id', Integer(), primary_key=True), 37 Column('cookie_name', String(50), index=True), Column('cookie_recipe_url', String(255)), Column('cookie_sku', String(55)), Column('quantity', Integer()), Column('unit_cost', Numeric(12, 2)), CheckConstraint('quantity > 0', name='quantity_positive') ) users = Table('users', metadata, Column('user_id', Integer(), primary_key=True), Column('username', String(15), nullable=False, unique=True), Column('email_address', String(255), nullable=False), Column('phone', String(20), nullable=False), Column('password', String(25), nullable=False), Column('created_on', DateTime(), default=datetime.now), Column('updated_on', DateTime(), default=datetime.now, onupdate=datetime.now) ) orders = Table('orders', metadata, Column('order_id', Integer()), Column('user_id', ForeignKey('users.user_id')), Column('shipped', Boolean(), default=False) ) line_items = Table('line_items', metadata, Column('line_items_id', Integer(), primary_key=True), Column('order_id', ForeignKey('orders.order_id')), Column('cookie_id', ForeignKey('cookies.cookie_id')), Column('quantity', Integer()), Column('extended_cost', Numeric(12, 2)) ) engine = create_engine('sqlite:///:memory:') metadata.create_all(engine) connection = engine.connect()
from sqlalchemy import select, insert ins = insert(users).values( username="cookiemon", email_address="mon@cookie.com", phone="111-111-1111", password="password" ) result = connection.execute(ins) s = select([users.c.username]) results = connection.execute(s) for result in results: print(result.username) print(result.password) #此处包AttributeError异常
在违反约束的状况下会出现IntegrityError异常。好比违反惟一性约束等。
s = select([users.c.username]) connection.execute(s).fetchall() [(u'cookiemon',)] ins = insert(users).values( username="cookiemon", email_address="damon@cookie.com", phone="111-111-1111", password="password" ) result = connection.execute(ins) #此处报IntegrityError, UNIQUE constraint failed: users.username #异常处理 try: result = connection.execute(ins) except IntegrityError as error: print(error.orig.message, error.params)
全部的SQLAlchemy异常处理方式都是上面那种思路,经过[SQLAlchemyError](http://docs.sqlal
chemy.org/en/latest/core/exceptions.html)能够获取到的信息由以下:
orig :The DBAPI exception object.
params:The parameter list being used when this exception occurred.
statement :The string SQL statement being invoked when this exception occurred.
from sqlalchemy.exc import IntegrityError def ship_it(order_id): s = select([line_items.c.cookie_id, line_items.c.quantity]) s = s.where(line_items.c.order_id == order_id) transaction = connection.begin() #开启事务 cookies_to_ship = connection.execute(s).fetchall() try: for cookie in cookies_to_ship: u = update(cookies).where(cookies.c.cookie_id == cookie.cookie_id) u = u.values(quantity=cookies.c.quantity - cookie.quantity) result = connection.execute(u) u = update(orders).where(orders.c.order_id == order_id) u = u.values(shipped=True) result = connection.execute(u) print("Shipped order ID: {}".format(order_id)) transaction.commit() #提交事务 except IntegrityError as error: transaction.rollback() #事务回滚 print(error)