简介:应用级扩缩容是相对于运维级而言的。像监控CPU/内存的利用率就属于应用无关的纯运维指标,针对这种指标进行扩缩容的HPA配置就是运维级扩缩容。而像请求数量、请求延迟、P99分布等指标就属于应用相关的,或者叫业务感知的监控指标。 本篇将介绍3种应用级监控指标在HPA中的配置,以实现应用级自动扩缩容。
应用级扩缩容是相对于运维级而言的。像监控CPU/内存的利用率就属于应用无关的纯运维指标,针对这种指标进行扩缩容的HPA配置就是运维级扩缩容。而像请求数量、请求延迟、P99分布等指标就属于应用相关的,或者叫业务感知的监控指标。html
本篇将介绍3种应用级监控指标在HPA中的配置,以实现应用级自动扩缩容。git
执行以下命令部署kube-metrics-adapter(完整脚本参见:demo\_hpa.sh)。:github
helm --kubeconfig "$USER_CONFIG" -n kube-system install asm-custom-metrics \ $KUBE_METRICS_ADAPTER_SRC/deploy/charts/kube-metrics-adapter \ --set prometheus.url=http://prometheus.istio-system.svc:9090
执行以下命令验证部署状况:json
#验证POD kubectl --kubeconfig "$USER_CONFIG" get po -n kube-system | grep metrics-adapter asm-custom-metrics-kube-metrics-adapter-6fb4949988-ht8pv 1/1 Running 0 30s #验证CRD kubectl --kubeconfig "$USER_CONFIG" api-versions | grep "autoscaling/v2beta" autoscaling/v2beta1 autoscaling/v2beta2 #验证CRD kubectl --kubeconfig "$USER_CONFIG" get --raw "/apis/external.metrics.k8s.io/v1beta1" | jq . { "kind": "APIResourceList", "apiVersion": "v1", "groupVersion": "external.metrics.k8s.io/v1beta1", "resources": [] }
执行以下命令部署flagger loadtester:api
kubectl --kubeconfig "$USER_CONFIG" apply -f $FLAAGER_SRC/kustomize/tester/deployment.yaml -n test kubectl --kubeconfig "$USER_CONFIG" apply -f $FLAAGER_SRC/kustomize/tester/service.yaml -n test
首先咱们建立一个感知应用请求数量(istio_requests_total
)的HorizontalPodAutoscaler配置:并发
apiVersion: autoscaling/v2beta2 kind: HorizontalPodAutoscaler metadata: name: podinfo-total namespace: test annotations: metric-config.external.prometheus-query.prometheus/processed-requests-per-second: | sum(rate(istio_requests_total{destination_workload_namespace="test",reporter="destination"}[1m])) spec: maxReplicas: 5 minReplicas: 1 scaleTargetRef: apiVersion: apps/v1 kind: Deployment name: podinfo metrics: - type: External external: metric: name: prometheus-query selector: matchLabels: query-name: processed-requests-per-second target: type: AverageValue averageValue: "10"
执行以下命令部署这个HPA配置:app
kubectl --kubeconfig "$USER_CONFIG" apply -f resources_hpa/requests_total_hpa.yaml
执行以下命令校验:运维
kubectl --kubeconfig "$USER_CONFIG" get --raw "/apis/external.metrics.k8s.io/v1beta1" | jq .
结果以下:ide
{ "kind": "APIResourceList", "apiVersion": "v1", "groupVersion": "external.metrics.k8s.io/v1beta1", "resources": [ { "name": "prometheus-query", "singularName": "", "namespaced": true, "kind": "ExternalMetricValueList", "verbs": [ "get" ] } ] }
相似地,咱们能够使用其余维度的应用级监控指标配置HPA。举例以下,再也不冗述。jsonp
apiVersion: autoscaling/v2beta2 kind: HorizontalPodAutoscaler metadata: name: podinfo-latency-avg namespace: test annotations: metric-config.external.prometheus-query.prometheus/latency-average: | sum(rate(istio_request_duration_milliseconds_sum{destination_workload_namespace="test",reporter="destination"}[1m])) /sum(rate(istio_request_duration_milliseconds_count{destination_workload_namespace="test",reporter="destination"}[1m])) spec: maxReplicas: 5 minReplicas: 1 scaleTargetRef: apiVersion: apps/v1 kind: Deployment name: podinfo metrics: - type: External external: metric: name: prometheus-query selector: matchLabels: query-name: latency-average target: type: AverageValue averageValue: "0.005"
apiVersion: autoscaling/v2beta2 kind: HorizontalPodAutoscaler metadata: name: podinfo-p95 namespace: test annotations: metric-config.external.prometheus-query.prometheus/p95-latency: | histogram_quantile(0.95,sum(irate(istio_request_duration_milliseconds_bucket{destination_workload_namespace="test",destination_canonical_service="podinfo"}[5m]))by (le)) spec: maxReplicas: 5 minReplicas: 1 scaleTargetRef: apiVersion: apps/v1 kind: Deployment name: podinfo metrics: - type: External external: metric: name: prometheus-query selector: matchLabels: query-name: p95-latency target: type: AverageValue averageValue: "4"
执行以下命令产生实验流量,以验证HPA配置自动扩容生效。
alias k="kubectl --kubeconfig $USER_CONFIG" loadtester=$(k -n test get pod -l "app=flagger-loadtester" -o jsonpath='{.items..metadata.name}') k -n test exec -it ${loadtester} -c loadtester -- hey -z 5m -c 2 -q 10 http://podinfo:9898
这里运行了一个持续5分钟、QPS=十、并发数为2的请求。
hey命令详细参考以下:
Usage: hey [options...] <url> Options: -n Number of requests to run. Default is 200. -c Number of workers to run concurrently. Total number of requests cannot be smaller than the concurrency level. Default is 50. -q Rate limit, in queries per second (QPS) per worker. Default is no rate limit. -z Duration of application to send requests. When duration is reached, application stops and exits. If duration is specified, n is ignored. Examples: -z 10s -z 3m. -o Output type. If none provided, a summary is printed. "csv" is the only supported alternative. Dumps the response metrics in comma-separated values format. -m HTTP method, one of GET, POST, PUT, DELETE, HEAD, OPTIONS. -H Custom HTTP header. You can specify as many as needed by repeating the flag. For example, -H "Accept: text/html" -H "Content-Type: application/xml" . -t Timeout for each request in seconds. Default is 20, use 0 for infinite. -A HTTP Accept header. -d HTTP request body. -D HTTP request body from file. For example, /home/user/file.txt or ./file.txt. -T Content-type, defaults to "text/html". -a Basic authentication, username:password. -x HTTP Proxy address as host:port. -h2 Enable HTTP/2. -host HTTP Host header. -disable-compression Disable compression. -disable-keepalive Disable keep-alive, prevents re-use of TCP connections between different HTTP requests. -disable-redirects Disable following of HTTP redirects -cpus Number of used cpu cores. (default for current machine is 4 cores)
执行以下命令观察扩容状况:
watch kubectl --kubeconfig $USER_CONFIG -n test get hpa/podinfo-total
结果以下:
Every 2.0s: kubectl --kubeconfig /Users/han/shop_config/ack_zjk -n test get hpa/podinfo East6C16G: Tue Jan 26 18:01:30 2021 NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE podinfo Deployment/podinfo 10056m/10 (avg) 1 5 2 4m45s
另外两个HPA相似,命令以下:
kubectl --kubeconfig $USER_CONFIG -n test get hpa watch kubectl --kubeconfig $USER_CONFIG -n test get hpa/podinfo-latency-avg watch kubectl --kubeconfig $USER_CONFIG -n test get hpa/podinfo-p95
同时,咱们能够实时在Prometheus中查看相关的应用级监控指标的实时数据。示意以下:
本文内容由阿里云实名注册用户自发贡献,版权归原做者全部,阿里云开发者社区不拥有其著做权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。若是您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将马上删除涉嫌侵权内容。