第五篇 Flask组件之SQLAchemy及Flask-SQLAlchemy插件/Flask-Script/Flask-migrate/pipreqs模块

SQLAlchemy组件

一. 介绍

SQLAlchemy是一个基于Python实现的ORM框架。该框架创建在 DB API之上,使用关系对象映射进行数据库操做,简言之即是:将类和对象转换成SQL,而后使用数据API执行SQL并获取执行结果。html

# 安装
pip3 install sqlalchemy

组成部分:python

  • Engine,框架的引擎
  • Connection Pooling ,数据库链接池
  • Dialect,选择链接数据库的DB API种类(即选择是用pymysql仍是mysqldb)
  • Schema/Types,架构和类型
  • SQL Exprression Language,SQL表达式语言

SQLAlchemy自己没法操做数据库,其必须以pymsql等第三方插件,Dialect用于和数据API进行交流,根据配置文件的不一样调用不一样的数据库API,从而实现对数据库的操做,如:mysql

下面这些连接是字符串:在Dialect里
MySQL-Python mysql+mysqldb://<user>:<password>@<host>[:<port>]/<dbname> pymysql mysql+pymysql://<username>:<password>@<host>/<dbname>[?<options>] MySQL-Connector mysql+mysqlconnector://<user>:<password>@<host>[:<port>]/<dbname> cx_Oracle oracle+cx_oracle://user:pass@host:port/dbname[?key=value&key=value...] 更多:http://docs.sqlalchemy.org/en/latest/dialects/index.html

要使用这些,必须先安装对应的 mysqldb、pymysql、mysqlconnector、 cx_oracle

 二.基本使用(通常不按照该示例怎么写,只为了说明)

1. 链接池sql

示例1:链接池始终只有一个连接数据库

import time
import threading
import sqlalchemy
from sqlalchemy import create_engine
from sqlalchemy.engine.base import Engine

engine = create_engine(
    # 用pymysql连接mysql;
    # root:123   用户名:密码
    # 127.0.0.1:3006 数据库ip及端口
    # t1:数据库名
    # charset=utf8:编码
    "mysql+pymysql://root:123@127.0.0.1:3306/t1?charset=utf8",
    max_overflow=2,  # 超过链接池大小外最多建立的链接(即5个已经不够用了,最多再能建立2个,也就是总共最多建立7个连接池)
    pool_size=5,  # 链接池大小,最多5个
    pool_timeout=30,  # 池中没有线程最多等待的时间(秒),不然报错
    pool_recycle=-1  # 多久以后对线程池中的线程进行一次链接的回收(重置)
)

conn = engine.raw_connection()  # 去连接池拿一个连接
cursor = conn.cursor()  # 在连接里拿个cursor,这里其实已经执行了pymysql里的功能了
# 执行sql语句
cursor.execute(
    "select * from t1"
)
result = cursor.fetchall()
cursor.close()
conn.close()
示例一

示例二:链接池有多个连接django

import time
import threading
import sqlalchemy
from sqlalchemy import create_engine
from sqlalchemy.engine.base import Engine

engine = create_engine(
    # 用pymysql连接mysql;
    # root:123   用户名:密码
    # 127.0.0.1:3006 数据库ip及端口
    # t1:数据库名
    # charset=utf8:编码
    "mysql+pymysql://root:123@127.0.0.1:3306/t1?charset=utf8",
    max_overflow=0,  # 超过链接池大小外最多建立的链接(即5个已经不够用了,最多再能建立2个,也就是总共最多建立7个连接池)
    pool_size=5,  # 链接池大小,最多5个
    pool_timeout=30,  # 池中没有线程最多等待的时间(秒),不然报错
    pool_recycle=-1  # 多久以后对线程池中的线程进行一次链接的回收(重置)
)



def task(arg):
    conn = engine.raw_connection()  # 去连接池拿一个连接
    cursor = conn.cursor() # 在连接里拿个cursor,这里其实已经执行了pymysql里的功能了
    # 执行sql语句
    cursor.execute(
        "select * from t1"
        "select sleep(2)"
    )
    result = cursor.fetchall()
    cursor.close()
    conn.close()

# 建立了20个线程
# 若是速度特别快,可能一个连接就够了
# 若是速度特别慢,多是5个5个的执行的。
for i in range(20):
    t = threading.Thread(target=task, args=(i,))
    t.start()
示例二

2. ORMflask

a.定义数据库表、建立表单、删除表安全

from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, Text, ForeignKey, DateTime, UniqueConstraint, Index

# 标准写法:
Base = declarative_base()

# 1. 定义表名及表里的字段,继承Base
class Users(Base):
    __tablename__ = 'users'   # 生成的数据库表名
    # 表里的具体字段
    # id列,id是主键
    id = Column(Integer, primary_key=True)
    # name列,字符串类型(最大32个字符),index是索引,nullable:是否可为空,Flase表示不可为空
    name = Column(String(32), index=True, nullable=False)

# 2. 单纯使用sqlAlchemy建立表
def init_db():
    """
    根据类建立数据库表
    :return: 
    """
    # 连接数据库
    engine = create_engine(
        "mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf8",
        max_overflow=0,  # 超过链接池大小外最多建立的链接
        pool_size=5,  # 链接池大小
        pool_timeout=30,  # 池中没有线程最多等待的时间,不然报错
        pool_recycle=-1  # 多久以后对线程池中的线程进行一次链接的回收(重置)
    )

    Base.metadata.create_all(engine)  # 读取Base里全部的表,在数据库里生成表

# 删除表
def drop_db():
    """
    根据类删除数据库表
    :return: 
    """
    engine = create_engine(
        "mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf8",
        max_overflow=0,  # 超过链接池大小外最多建立的链接
        pool_size=5,  # 链接池大小
        pool_timeout=30,  # 池中没有线程最多等待的时间,不然报错
        pool_recycle=-1  # 多久以后对线程池中的线程进行一次链接的回收(重置)
    )

    Base.metadata.drop_all(engine)

# 3.修改表单纯使用sqlalchemy作不到,须要用其余组件才能够。

if __name__ == '__main__':
    drop_db()
    init_db()
View Code

b.操做数据库表- 增删改查session

#!/usr/bin/env python
# -*- coding:utf-8 -*-
from sqlalchemy.orm import sessionmaker
from sqlalchemy import create_engine
from models import Users

# 建立连接池
engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6", max_overflow=0, pool_size=5)
Connection = sessionmaker(bind=engine)

# 每次执行数据库操做时,都须要建立一个Connection连接
conn = Connection()

# ############# 执行ORM操做-增长操做 #############
obj1 = Users(name="alex1")
conn.add(obj1)

# 提交事务
conn.commit()
# 关闭session
conn.close()
增长操做

三.具体(重点)

1. 定义单表架构

import datetime
from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, Text, ForeignKey, DateTime, UniqueConstraint, Index

Base = declarative_base()
# ##################### 单表示例 #########################

class Users(Base):
    __tablename__ = 'users'
    # 表里的字段
    id = Column(Integer, primary_key=True)
    name = Column(String(32), index=True, nullable=False)
    email = Column(String(32), unique=True)   # unique 表示惟一索引
    ctime = Column(DateTime, default=datetime.datetime.now)  # 建立时间:datetime.datetime.now,now后面不能加(),由于它是静态字段
    extra = Column(Text, nullable=True)

    # 建立联合惟一索引
    __table_args__ = (
    #     UniqueConstraint('id', 'name', name='uix_id_name'),  # id 和 name 作了联合惟一
    #     Index('ix_id_name', 'name', 'email'),    # name 和 email 作了联合索引
    )
   # 问题:
   # 1. 字符编码怎么指定?

2. 定义多表

# ##################### 一对多示例 #########################
class Hobby(Base):
    __tablename__ = 'hobby'
    id = Column(Integer, primary_key=True)
    caption = Column(String(50), default='篮球')


class Person(Base):
    __tablename__ = 'person'
    nid = Column(Integer, primary_key=True)
    name = Column(String(32), index=True, nullable=True)
    hobby_id = Column(Integer, ForeignKey("hobby.id"))  # 经过表名.字段名关联

    # 与生成表结构无关,仅用于查询方便
    hobby = relationship("Hobby", backref='pers')
# ##################### 多对多示例 #########################

# 多对多关系表
class Server2Group(Base):
    __tablename__ = 'server2group'
    id = Column(Integer, primary_key=True, autoincrement=True)
    # 在这里生成多对多关系的
    server_id = Column(Integer, ForeignKey('server.id'))
    group_id = Column(Integer, ForeignKey('group.id'))


class Group(Base):
    __tablename__ = 'group'
    id = Column(Integer, primary_key=True)
    name = Column(String(64), unique=True, nullable=False)

    # 与生成表结构无关,仅用于查询方便
    servers = relationship('Server', secondary='server2group', backref='groups')


class Server(Base):
    __tablename__ = 'server'

    id = Column(Integer, primary_key=True, autoincrement=True)
    hostname = Column(String(64), unique=True, nullable=False)

3. 执行生成并建立表

def init_db():
    """
    根据类建立数据库表
    :return:
    """
    engine = create_engine(
        "mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf8",
        max_overflow=0,  # 超过链接池大小外最多建立的链接
        pool_size=5,  # 链接池大小
        pool_timeout=30,  # 池中没有线程最多等待的时间,不然报错
        pool_recycle=-1  # 多久以后对线程池中的线程进行一次链接的回收(重置)
    )

    Base.metadata.create_all(engine)

if __name__ == '__main__':
    init_db()

4. 执行删除表

def drop_db():
    """
    根据类删除数据库表
    :return:
    """
    engine = create_engine(
        "mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf8",
        max_overflow=0,  # 超过链接池大小外最多建立的链接
        pool_size=5,  # 链接池大小
        pool_timeout=30,  # 池中没有线程最多等待的时间,不然报错
        pool_recycle=-1  # 多久以后对线程池中的线程进行一次链接的回收(重置)
    )

    Base.metadata.drop_all(engine)

if __name__ == '__main__':
    drop_db()

5. 操做表

 上面分别介绍了表的建立,下面对表进行操做的详细介绍

建立表通常只操做一次,因此放到 models.py文件里

import datetime
from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, Text, ForeignKey, DateTime, UniqueConstraint, Index
from sqlalchemy.orm import relationship



Base = declarative_base()
# ##################### 单表示例 #########################

class Users(Base):
    __tablename__ = 'users'
    # 表里的字段
    id = Column(Integer, primary_key=True)
    name = Column(String(32), index=True, nullable=False)
    email = Column(String(32), unique=True)   # unique 表示惟一索引
    ctime = Column(DateTime, default=datetime.datetime.now)  # 建立时间:datetime.datetime.now,now后面不能加(),由于它是静态字段
    extra = Column(Text, nullable=True)

    # 建立联合惟一索引
    __table_args__ = (
        UniqueConstraint('id', 'name', name='uix_id_name'),  # id 和 name 作了联合惟一
        Index('ix_id_name', 'name', 'email'),    # name 和 email 作了联合索引
    )
   # 问题:
   # 1. 字符编码怎么指定?


# ##################### 一对多示例 #########################
class Hobby(Base):
    __tablename__ = 'hobby'
    id = Column(Integer, primary_key=True)
    caption = Column(String(50), default='篮球')


class Person(Base):
    __tablename__ = 'person'
    nid = Column(Integer, primary_key=True)
    name = Column(String(32), index=True, nullable=True)
    hobby_id = Column(Integer, ForeignKey("hobby.id"))  # 经过表名.字段名关联

    # 与生成表结构无关,仅用于查询方便
    hobby = relationship("Hobby", backref='pers')


# ##################### 多对多示例 #########################

# 多对多关系表
class Server2Group(Base):
    __tablename__ = 'server2group'
    id = Column(Integer, primary_key=True, autoincrement=True)
    # 在这里生成多对多关系的
    server_id = Column(Integer, ForeignKey('server.id'))
    group_id = Column(Integer, ForeignKey('group.id'))


class Group(Base):
    __tablename__ = 'group'
    id = Column(Integer, primary_key=True)
    name = Column(String(64), unique=True, nullable=False)

    # 与生成表结构无关,仅用于查询方便
    servers = relationship('Server', secondary='server2group', backref='groups')


class Server(Base):
    __tablename__ = 'server'

    id = Column(Integer, primary_key=True, autoincrement=True)
    hostname = Column(String(64), unique=True, nullable=False)

def init_db():
    """
    根据类建立数据库表
    :return:
    """
    engine = create_engine(
        "mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf8",
        max_overflow=0,  # 超过链接池大小外最多建立的链接
        pool_size=5,  # 链接池大小
        pool_timeout=30,  # 池中没有线程最多等待的时间,不然报错
        pool_recycle=-1  # 多久以后对线程池中的线程进行一次链接的回收(重置)
    )

    Base.metadata.create_all(engine)

if __name__ == '__main__':
    init_db()

def drop_db():
    """
    根据类删除数据库表
    :return:
    """
    engine = create_engine(
        "mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf8",
        max_overflow=0,  # 超过链接池大小外最多建立的链接
        pool_size=5,  # 链接池大小
        pool_timeout=30,  # 池中没有线程最多等待的时间,不然报错
        pool_recycle=-1  # 多久以后对线程池中的线程进行一次链接的回收(重置)
    )

    Base.metadata.drop_all(engine)

if __name__ == '__main__':
    drop_db()
models

SQLAlchemy详细介绍

1. SQLAlchemy之两种链接方式:

  (1)第一种数据库链接方式  sessionmaker

from sqlalchemy.orm import sessionmaker
from sqlalchemy import create_engine
import models

# 1.建立链接池
engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf-8",max_overflow = 0 , pool_size = 5)
Conn = sessionmaker(bind=engine)

# 2.从链接池中获取数据库链接
conn = Conn()

# ###############执行ORM操做#####################
# 3.执行ORM操做
obj1 = models.Users(name="alex1",email="alex1@xx.com")
conn.add(obj1)
conn.commit()

# 4.关闭数据库链接(将链接放回链接池)
conn.close()

  (2)第二种数据库链接方式  scoped_session  --- 推荐这种

from sqlalchemy.orm import sessionmaker
from sqlalchemy import create_engine
from sqlalchemy.orm import scoped_session # 第二种方式
import models

# 1.建立链接池
engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf-8",max_overflow = 0 , pool_size = 5)
Conn = sessionmaker(bind=engine)

# 2.从链接池中获取数据库链接
conn = scoped_session(Conn)

# ###############执行ORM操做#####################
# 3.执行ORM操做
obj1 = models.Users(name="alex1",email="alex1@xx.com")
# 本质执行do函数:add
conn.add(obj1)

# 本质调用do函数:commit
conn.commit()

# 4.关闭数据库链接(将链接放回链接池)
conn.close()
#!/usr/bin/env python
# -*- coding:utf-8 -*-
from sqlalchemy.orm import sessionmaker
from sqlalchemy import create_engine
from sqlalchemy.orm import scoped_session
from models import Users

engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6", max_overflow=0, pool_size=5)
Session = sessionmaker(bind=engine)

"""
# 线程安全,基于本地线程实现每一个线程用同一个session
# 特殊的:scoped_session中有原来方法的Session中的一下方法:

public_methods = (
    '__contains__', '__iter__', 'add', 'add_all', 'begin', 'begin_nested',
    'close', 'commit', 'connection', 'delete', 'execute', 'expire',
    'expire_all', 'expunge', 'expunge_all', 'flush', 'get_bind',
    'is_modified', 'bulk_save_objects', 'bulk_insert_mappings',
    'bulk_update_mappings',
    'merge', 'query', 'refresh', 'rollback',
    'scalar'
)
"""
session = scoped_session(Session)


# ############# 执行ORM操做 #############
obj1 = Users(name="alex1")
session.add(obj1)



# 提交事务
session.commit()
# 关闭session
session.close()
基于scoped_session实现线程安全--wpq

2. SQLAlchemy的基本操做-增删改查(*****)

from sqlalchemy.orm import sessionmaker
from sqlalchemy import create_engine
import models

# 1.建立链接池
engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf-8",max_overflow = 0 , pool_size = 5)
Conn = sessionmaker(bind=engine)

# 2.从链接池中获取数据库链接
conn = Conn()

# ###############执行ORM操做#####################
# 3.执行ORM操做

############### 增长 #############
#  add 增单条增长
obj1 = models.Users(name="alex1",email="alex1@xx.com")   # 增长的时候先建立一个对象,而后放到add()或者add_all()
conn.add(obj1)
conn.commit()

# add_all():批量增长
conn.add_all([
    models.Users(name="alex2",email="alex2@xx.com"),
    models.Users(name="alex3",email="alex3@xx.com"),
    models.Users(name="alex4",email="alex4@xx.com")
])
conn.commit()

############### 查询 #############
# 查的表:models.Users;
user_list = conn.query(models.Users).all()   # all()查出全部的内容了
for row in user_list:
    print(row.id)
    print(row.name)
    print(row.email)
    print(row.ctime)
conn.commit()

""" 其余查询,下面的Users前面都省略了models.,用的时候加上
r1 = conn.query(Users).all()
r2 = conn.query(Users.name.label('xx'), Users.age).all()   # label('xx') 至关于取了个别名
r3 = conn.query(Users).filter(Users.name == "alex").all()  # filter里传的是表达式
r4 = conn.query(Users).filter_by(name='alex').all()       # filter_by 里面传的是参数
r5 = conn.query(Users).filter_by(name='alex').first()    # first,第一个对象

# 构造复杂点的sql
# text("id<:value and name=:name"):意识是id<x,name=y,后面的params是具体的参数;order_by:是排序
r6 = conn.query(Users).filter(text("id<:value and name=:name")).params(value=224, name='fred').order_by(Users.id).all()

# 构造更复杂点的sql
r7 = conn.query(Users).from_statement(text("SELECT * FROM users where name=:name")).params(name='ed').all()
"""

# 查询出id > 2的数据
user_list = conn.query(models.Users).filter(models.Users.id > 2)
conn.commit()
############### 删除 #############
conn.query(models.Users).filter(models.Users.id > 2).delete()
conn.commit()


############### 更改 #############
# 改的时候,update传的是字典
conn.query(models.Users).filter(models.Users.id == 1).update({"name":"eric"})
# 字符串相加,后面要写synchronize_session = False
conn.query(models.Users).filter(models.Users.id > 0).update({models.Users.name:models.Users.name + "999"}, synchronize_session = False)

# 若是是数字相加,要加上synchronize_session = "evaluate"
conn.query(models.Users).filter(models.Users.id > 0).update({models.Users.age:models.Users.age + 1}, synchronize_session = "evaluate")
conn.commit()


# 4.关闭数据库链接(将链接放回链接池)
conn.close()
基本增删改查示例1
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import time
import threading

from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine
from sqlalchemy.sql import text

from db import Users, Hosts

engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6", max_overflow=0, pool_size=5)
Session = sessionmaker(bind=engine)

session = Session()

# ################ 添加 ################
"""
obj1 = Users(name="wupeiqi")
session.add(obj1)

session.add_all([
    Users(name="wupeiqi"),
    Users(name="alex"),
    Hosts(name="c1.com"),
])
session.commit()
"""

# ################ 删除 ################
"""
session.query(Users).filter(Users.id > 2).delete()
session.commit()
"""
# ################ 修改 ################
"""
session.query(Users).filter(Users.id > 0).update({"name" : "099"})
session.query(Users).filter(Users.id > 0).update({Users.name: Users.name + "099"}, synchronize_session=False)
session.query(Users).filter(Users.id > 0).update({"age": Users.age + 1}, synchronize_session="evaluate")
session.commit()
"""
# ################ 查询 ################
"""
r1 = session.query(Users).all()
r2 = session.query(Users.name.label('xx'), Users.age).all()
r3 = session.query(Users).filter(Users.name == "alex").all()
r4 = session.query(Users).filter_by(name='alex').all()
r5 = session.query(Users).filter_by(name='alex').first()
r6 = session.query(Users).filter(text("id<:value and name=:name")).params(value=224, name='fred').order_by(Users.id).all()
r7 = session.query(Users).from_statement(text("SELECT * FROM users where name=:name")).params(name='ed').all()
"""


session.close()

基本增删改查示例
基本增删改查示例2-wpq

3. SQLAlchemy的经常使用操做(*****)

分组、分页、模糊查询等

########### 条件 ########### # filter与filter_by的区别:filter里传参数,filter_by里传表达式
ret = session.query(Users).filter_by(name='alex').all() ret = session.query(Users).filter(Users.id > 1, Users.name == 'eric').all()  # ,表示 and
ret = session.query(Users).filter(Users.id.between(1, 3), Users.name == 'eric').all() ret = session.query(Users).filter(Users.id.in_([1,3,4])).all()   # in_ 固定搭配
ret = session.query(Users).filter(~Users.id.in_([1,3,4])).all()  # ~ 表示非 除了她之外
ret = session.query(Users).filter(Users.id.in_(session.query(Users.id).filter_by(name='eric'))).all() # 嵌套

# 导入 and_ 和 or_
from sqlalchemy import and_, or_ ret = session.query(Users).filter(and_(Users.id > 3, Users.name == 'eric')).all() ret = session.query(Users).filter(or_(Users.id < 2, Users.name == 'eric')).all()  # 表示or_里的两个都是or的关系 # 能够嵌套
ret = session.query(Users).filter( or_( Users.id < 2, and_(Users.name == 'eric', Users.id > 3), Users.extra != "" )).all() ############ 通配符 ###########
ret = session.query(Users).filter(Users.name.like('e%')).all()  # 以e开头,%表明全部字符
ret = session.query(Users).filter(~Users.name.like('e%')).all() # 不以e开头,%表明全部字符

############ 限制 ############
ret = session.query(Users)[1:2] ########### 排序 ##############
ret = session.query(Users).order_by(Users.name.desc()).all()  # 根据name按照从大到小排序
ret = session.query(Users).order_by(Users.name.desc(), Users.id.asc()).all() # 写多个,优先按照name从大到小排序,若有重名,再按id从小到大排

############## 分组 ###############
from sqlalchemy.sql import func  # 导入聚合函数
 ret = session.query(Users).group_by(Users.extra).all()  # 根据extra分组
ret = session.query( func.max(Users.id), func.sum(Users.id), func.min(Users.id)).group_by(Users.name).all() ret = session.query( func.max(Users.id), func.sum(Users.id), func.min(Users.id)).group_by(Users.name).having(func.min(Users.id) >2).all() ############# 连表 ##############
 ret = session.query(Users, Favor).filter(Users.id == Favor.nid).all() ret = session.query(Person).join(Favor).all()  # inner join 和 left join的区别? join(Favor).all()是一个总体

# 表里有外键,才能够这么连表
ret = session.query(Person).join(Favor, isouter=True).all()  # left join Person left join Favor # 若是没有外键,能够写参数

''' .all():表示取值 若是想看sql语句是什么,就先去掉.all() ret = session.query(Person).join(Favor, isouter=True) print(ret) 获得的就是 sql 语句 '''


############# 组合 ############ # union 和 union_all
q1 = session.query(Users.name).filter(Users.id > 2) q2 = session.query(Favor.caption).filter(Favor.nid < 2) ret = q1.union(q2).all() q1 = session.query(Users.name).filter(Users.id > 2) q2 = session.query(Favor.caption).filter(Favor.nid < 2) ret = q1.union_all(q2).all()
经常使用操做

4.SqlAlchemy也支持原生sql(重点也支持原生sql)

上面是orm里的sql操做,若是还有更复杂的sql,就能够写原生sql

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import time
import threading

from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine
from sqlalchemy.sql import text
from sqlalchemy.engine.result import ResultProxy
from db import Users, Hosts

engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6", max_overflow=0, pool_size=5)
Session = sessionmaker(bind=engine)

session = Session()

# 查询
# cursor = session.execute('select * from users')
# result = cursor.fetchall()

# 添加
cursor = session.execute('insert into users(name) values(:value)',params={"value":'wupeiqi'})
session.commit()
print(cursor.lastrowid)

session.close()
原生sql

5.SQLAlchemy之一对多relationship(****)

import datetime
from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, Text, ForeignKey, DateTime, UniqueConstraint, Index
from sqlalchemy.orm import relationship

Base = declarative_base()


class Hobby(Base):
    __tablename__ = "hobby"
    id = Column(Integer,primary_key=True)
    caption = Column(String(50),default="篮球")


class Person(Base):
    __tablename__ = "person"
    nid = Column(Integer,primary_key=True)
    name = Column(String(32),index=True, nullable=True)
    hobby_id = Column(Integer,ForeignKey('hobby.id'))
    # relationship与数据库不要紧,不会再数据库里生成这个字段的。关联的是Hobby表,做用是快速帮你作连表操做
    hobby = relationship("Hobby", backref = 'pers')  # backref 表示能够反向关联
models.py
# -*- coding:utf-8 -*-
import time
import threading

from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine
from sqlalchemy.sql import text
from sqlalchemy.engine.result import ResultProxy


# 1.建立链接池
engine = create_engine(
    "mysql+pymysql://root@127.0.0.1:3306/s7?charset=utf-8",
    max_overflow = 0,
    pool_sise =5
    )
Session = sessionmaker(bind=engine)

# 2. 从链接池中获取数据库链接
session = Session()

# 3. 执行ORM操做

# 先分别给两张表里新增数据
# 给hobby里新增数据
session.add_all([
    models.Hobby(caption='姑娘'),
    models.Hobby(caption='足球'),
])
session.commit()

# 给person表里新增人
session.add_all([
    models.Person(name='李志',id = 2),
    models.Person(name='龙龙',id = 1),
    models.Person(name='大龙',id = 3),
])
session.commit()

# 查全部的用户表person表
person_list = session.query(models.Person).all()
for row in person_list:
    print(row.name, row.hobby_id)

# 需求:把hobby_id对应的中文名字所有拿出来--连表操做   喜欢足球的全部人
# 方式一
person_list = session.query(models.Person.name, models.Hobby.caption).join(models.Hobby, isouter=True).all()
for row in person_list:
    print(row.name, row.hobby_id, row.caption)

# 方式二:经过加relationship自动,进行自动连表查询
# 正向关联
person_list = session.query(models.Person).all()
for row in person_list:
    print(row.name, row.hobby.caption)

# 或:也能够进行反向关联   喜欢姑娘的全部人
obj = session.query(models.Hobby).filter(models.Hobby.id == 1).first()
persons = obj.pers
print(persons)


# releationship也能够作增长
hb = models.Hobby(caption = "人妖")
hb.pers = [models.Person(name = "liuwu"),models.Person=(name = "liz")]
session.add(hb)
session.commit()

#
obj = models.Person(name = "lili", hobby = models.Hobby(caption = "人妖2"))
session.add(obj)
session.commit()


# 4. 关闭数据库链接(将链接放回链接池)
relationship一对多;基于relationship操做foreignKey
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import time
import threading

from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine
from sqlalchemy.sql import text
from sqlalchemy.engine.result import ResultProxy
from db import Users, Hosts, Hobby, Person

engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf8", max_overflow=0, pool_size=5)
Session = sessionmaker(bind=engine)
session = Session()
# 添加
"""
session.add_all([
    Hobby(caption='乒乓球'),
    Hobby(caption='羽毛球'),
    Person(name='张三', hobby_id=3),
    Person(name='李四', hobby_id=4),
])

person = Person(name='张九', hobby=Hobby(caption='姑娘'))
session.add(person)

hb = Hobby(caption='人妖')
hb.pers = [Person(name='文飞'), Person(name='博雅')]
session.add(hb)

session.commit()
"""

# 使用relationship正向查询
"""
v = session.query(Person).first()
print(v.name)
print(v.hobby.caption)
"""

# 使用relationship反向查询
"""
v = session.query(Hobby).first()
print(v.caption)
print(v.pers)
"""

session.close()

基于relationship操做ForeignKey
基于relationship操做ForeignKey-wpq

6.SQLAlchemy之多对多relationship

import datetime
from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, Text, ForeignKey, DateTime, UniqueConstraint, Index
from sqlalchemy.orm import relationship


Base = declarative_base()

# 多对多关系表
class Server2Group(Base):
    __tablename__ = 'server2group'
    id = Column(Integer, primary_key=True, autoincrement=True)
    # 在这里生成多对多关系的
    server_id = Column(Integer, ForeignKey('server.id'))
    group_id = Column(Integer, ForeignKey('group.id'))


class Group(Base):
    __tablename__ = 'group'
    id = Column(Integer, primary_key=True)
    name = Column(String(64), unique=True, nullable=False)

    # 与生成表结构无关,仅用于查询方便
    servers = relationship('Server', secondary='server2group', backref='groups')


class Server(Base):
    __tablename__ = 'server'

    id = Column(Integer, primary_key=True, autoincrement=True)
    hostname = Column(String(64), unique=True, nullable=False)
models.py
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import time
import threading

from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine
from sqlalchemy.sql import text
from sqlalchemy.engine.result import ResultProxy
from db import Users, Hosts, Hobby, Person, Group, Server, Server2Group

engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf8", max_overflow=0, pool_size=5)
Session = sessionmaker(bind=engine)
session = Session()
# 添加
"""
session.add_all([
    Server(hostname='c1.com'),
    Server(hostname='c2.com'),
    Group(name='A组'),
    Group(name='B组'),
])
session.commit()

s2g = Server2Group(server_id=1, group_id=1)
session.add(s2g)
session.commit()


gp = Group(name='C组')
gp.servers = [Server(hostname='c3.com'),Server(hostname='c4.com')]
session.add(gp)
session.commit()


ser = Server(hostname='c6.com')
ser.groups = [Group(name='F组'),Group(name='G组')]
session.add(ser)
session.commit()
"""


# 使用relationship正向查询
"""
v = session.query(Group).first()
print(v.name)
print(v.servers)
"""

# 使用relationship反向查询
"""
v = session.query(Server).first()
print(v.hostname)
print(v.groups)
"""


session.close()
基于relationship操做多对多-wpq

 7.其余

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import time
import threading

from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine
from sqlalchemy.sql import text, func
from sqlalchemy.engine.result import ResultProxy
from db import Users, Hosts, Hobby, Person, Group, Server, Server2Group

engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf8", max_overflow=0, pool_size=5)
Session = sessionmaker(bind=engine)
session = Session()

# 关联子查询
subqry = session.query(func.count(Server.id).label("sid")).filter(Server.id == Group.id).correlate(Group).as_scalar()
result = session.query(Group.name, subqry)
"""
SELECT `group`.name AS group_name, (SELECT count(server.id) AS sid 
FROM server 
WHERE server.id = `group`.id) AS anon_1 
FROM `group`
"""
# (SELECT count(server.id) 只能一个值


# 原生SQL
"""
# 查询
cursor = session.execute('select * from users')
result = cursor.fetchall()

# 添加
cursor = session.execute('insert into users(name) values(:value)',params={"value":'wupeiqi'})
session.commit()
print(cursor.lastrowid)
"""

session.close()

其余
关联子查询 

Flask-SQLAlchemy插件

就是Flask和SQLALchemy的管理者,让flask和sqlAlchemy无缝链接起来

本质上仍是目录和文件的管理

因此目录结构要保存好。

文件见:连接:https://pan.baidu.com/s/1aOaeCGCEPkTQnLe27Sdnow  密码:gzsq  

Flask-Migrate组件

SqlAlchemy自己不支持更改表结构,因此须要借助Flask-Migrate第三方组件操做

做用:flask-migrate用于实现相似Django数据库迁移:makemigrations/migrate ->migrate/upgrade

# 安装
pip install flask-migrate
from flask_script import Manager
from flask import Flask
from sansa import create_app, db

# 数据库迁移须要配置的项
# 第一:导入
from flask_migrate import Migrate, MigrateCommand

app = create_app()
manage = Manager(app)
# 第二
migrate = Migrate(app, db)

# 第三
manage.add_command('db', MigrateCommand)

'''
配置好上面三项,就能够在cmd里执行下面的命令迁移数据库了
数据库迁移命令:
    python manage.py db init
    python manage.py db migrate
    python manage.py db upgrade

'''

if __name__ == '__main__':
    manage.run()

Flask-script组件

做用:用于实现相似 django python manage.py runserver...这样的脚本

# 安装
pip install flask-script
# 使用

from flask_script import Manager  # 导入 Manage
from flask import Flask

app = Flask(__name__)
manage = Manager(app)   # 实例化manage

app.route("/")
def index():
    return "hello flask-script"


if __name__ == '__main__':
    manage.run()

先右键run起来程序,而后就能够在命令行里经过命令运行了

# 经过命令运行
python manage.py runserver
from flask_script import Manager
from flask import Flask

# 相似位置参数方式
@manage.command()
def custom(arg):
    '''
    自定义命令
    执行: python manage.py custom 123     ( 123 是传入的参数 )
    custom 表示要执行这个函数
    :param arg:
    :return:
    '''
    # 能够把离线脚本放入这里
    from sansa import create_app
    from sansa import db
    app = create_app()
    with app.app_context():
        db.create_all()


# 相似关键字参数方式
@manage.option('-n', '--name', dest = 'name')
@manage.option('-u','--url',dest = 'url')    
def cmd(name,url):
    '''
    自定义命令
    执行: python manage.py cmd - n mamingchen -u http://www.baidu.com
    - n ,-u: 都表示要传参数了
    :param name:
    :param url:
    :return:
    '''
    print(name,url)

if __name__ == '__main__':
    manage.run()

 

 

Flask-RESTful组件

 

pipreqs模块

一个项目常常会安装不少组件或者插件,都有不一样的版本,怎么才能知道这项目都用到了哪些模块,什么版本呢?

python有个模块能够很方便的干这件事.

1. 安装

pip install pipreqs

2. 检查并生成一个requirements.txt

# 必须在程序的根目录执行下面的命令

pipreqs ./

3. pipreqs 还能够导入自动安装尚未安装的插件

4. pycharm自己也能够自动检查程序并提示你安装尚未安装的插件

 

研究一下:

fabric

ansible

saltstack

相关文章
相关标签/搜索