使用IntelljIDEA生成接口的类继承图及装饰器模式

类图生成方法

以一个装饰器模式实现数学运算的例子为例。html

  1. 安装 Intellj Ultimate , lience server: http://xdouble.cn:8888/java

  2. 在类上右键点击 class diagram :
    数组

  3. 在获得的类的框框上 “双指单击”或右键 , 选择 show Implementations :
    app

  4. 获得的实现类列表上, Ctrl + A 全选
    函数

  5. Enter 获得类图结果,上面有 导出图片功能。
    布局

  6. 能够查看接口及实现类的覆写方法
    测试

  7. 调整布局
    this

  8. 添加额外的类
    若是发现还有点单独的接口有关联可是不在上述继承体系里, 能够添加额外的 class diagram 并按上如法炮制。3d

  9. 导出图片保存code

装饰器代码

Function.java 函数接口, sources 是被装饰的内层函数运算。

package zzz.study.patterns.decorator.func;

public abstract class Function {
    
    protected Function[] sources;
    
    public Function(Function[] sources) {
        this.sources = sources;
    }
    
    public Function(Function f) {
        this(new Function[] {f});
    }

    public abstract double f(double t);
    
    public String toString() {
        String name = this.getClass().toString();
        StringBuffer buf = new StringBuffer(name);
        if (sources.length > 0) {
            buf.append('(');
            for (int i=0; i < sources.length; i++) {
                if (i > 0)
                    buf.append(",");
                buf.append(sources[i]);
            }
            buf.append(')');
        }
        return buf.toString();
    }
}

Constant.java :常量函数

package zzz.study.patterns.decorator.func;

public class Constant extends Function {
    
    private double constant;
    
    public Constant() {
        super(new Function[] {});
    }
    
    public Constant(double constant) {
        super(new Function[]{});
        this.constant = constant;
    }
    
    public double f(double t) {
        return constant;
    }
    
    public String toString() {
        return Double.toString(constant);
    }

}

T.java : 线性函数

package zzz.study.patterns.decorator.func;

public class T extends Function {

    public T() {
        super(new Function[] {});
    }
    
    public double f(double t) {
        return t;
    }
    
    public String toString() {
        return "t";
    }
    
}

Square.java :平方函数

package zzz.study.patterns.decorator.func;

public class Square extends Function {
    
    public Square() {
        super(new Function[] {});
    }
    
    public Square(Function f) {
        super(new Function[] {f});
    }
    
    public double f(double t) {
        return Math.pow(sources[0].f(t),2);
    }
    
    public String toString() {
        
        StringBuffer buf = new StringBuffer("");
        if (sources.length > 0) {
            buf.append('(');
            buf.append(sources[0]);
            buf.append('^');
            buf.append(2);
            buf.append(')');
        }
        return buf.toString();
    }
    
}

ExpDouble.java :指数函数

package zzz.study.patterns.decorator.func;

public class ExpDouble extends Function {
    
    private double  expDouble;  // 指数的底数
    
    public ExpDouble() {
        super(new Function[] {});
    }
    
    public ExpDouble(double expDouble, Function f) {
        super(new Function[] {f});
        this.expDouble = expDouble;
    }   
    
    public double f(double t) {
        return Math.pow(expDouble, sources[0].f(t));
    }
    
    public String toString() {
        
        StringBuffer buf = new StringBuffer("");
        if (sources.length > 0) {
            buf.append('(');
            buf.append('(');
            buf.append(expDouble);
            buf.append(')');
            buf.append('^');
            buf.append(sources[0]);
            buf.append(')');
        }
        return buf.toString();
    }
  

}

Pow.java :幂函数

package zzz.study.patterns.decorator.func;

public class Pow extends Function {
    
    private double  pow;  // 幂函数的指数
    
    public Pow() {
        super(new Function[] {});
    }
    
    public Pow(Function f, double pow) {
        super(new Function[] {f});
        this.pow = pow;
    }   
    
    public double f(double t) {
        return Math.pow(sources[0].f(t), pow);
    }
    
    public String toString() {
        
        StringBuffer buf = new StringBuffer("");
        if (sources.length > 0) {
            buf.append('(');
            buf.append(sources[0]);
            buf.append('^');
            buf.append('(');
            buf.append(pow);
            buf.append(')');
            buf.append(')');
        }
        return buf.toString();
    }  
}

Arithmetic.java :四则运算

package zzz.study.patterns.decorator.func;

public class Arithmetic extends  Function {
    
    protected char op;
    
    public Arithmetic(char op, Function f1, Function f2) {
        super(new Function[] {f1, f2});
        this.op = op;
    }
    
    public double f(double t) {
        switch(op) {
            case '+':
                return sources[0].f(t) + sources[1].f(t);
            case '-':
                return sources[0].f(t) - sources[1].f(t);
            case '*':
                return sources[0].f(t) * sources[1].f(t);
            case '/':
                return sources[0].f(t) / sources[1].f(t);
            default:
                return 0;
        }
    }
    
    public String toString() {
        
        StringBuffer buf = new StringBuffer("");
        if (sources.length > 0) {
            buf.append('(');
            buf.append(sources[0]);
            buf.append(Character.toString(op));
            buf.append(sources[1]);
            buf.append(')');
        }
        return buf.toString();

    }

}

Sin.java , Cos.java 请读者自行完成。

测试:

package zzz.study.patterns.decorator;

import zzz.study.patterns.decorator.func.Arithmetic;
import zzz.study.patterns.decorator.func.Cos;
import zzz.study.patterns.decorator.func.Function;
import zzz.study.patterns.decorator.func.Sin;
import zzz.study.patterns.decorator.func.Square;
import zzz.study.patterns.decorator.func.T;

public class ShowFunction {
    
    public static void main(String[] args) {
        Function complexFunc = new Arithmetic('+', new Square(new Sin(new T())), new Square(new Cos(new T())));
        System.out.println(complexFunc + " = " + complexFunc.f(100.0));
        
    }
}

《Java函数接口实现函数组合及装饰器模式》 一文中,使用 Function 接口有更简洁的装饰器模式实现。

相关文章
相关标签/搜索