pandas适合于许多不一样类型的数据,包括:html
· 具备异构类型列的表格数据,例如SQL表格或Excel数据python
· 有序和无序(不必定是固定频率)时间序列数据。git
· 具备行列标签的任意矩阵数据(均匀类型或不一样类型)github
· 任何其余形式的观测/统计数据集。sql
因为这是一个Python语言的软件包,所以须要你的机器上首先须要具有Python语言的环境。关于这一点,请自行在网络上搜索获取方法。json
关于如何获取pandas请参阅官网上的说明:pandas Installation。数组
一般状况下,咱们能够经过pip来执行安装:安全
sudo pip3 install pandas
或者经过conda 来安装pandas:网络
conda install pandas
目前(2018年2月)pandas的最新版本是v0.22.0(发布时间:2017年12月29日)。数据结构
我已经将本文的源码和测试数据放到Github上: pandas_tutorial ,读者能够前往获取。
另外,pandas经常和NumPy一块儿使用,本文中的源码中也会用到NumPy。
建议读者先对NumPy有必定的熟悉再来学习pandas,我以前也写过一个NumPy的基础教程,参见这里:Python 机器学习库 NumPy 教程
pandas最核心的就是Series和DataFrame两个数据结构。
这两种类型的数据结构对好比下:
名称 | 维度 | 说明 |
---|---|---|
Series | 1维 | 带有标签的同构类型数组 |
DataFrame | 2维 | 表格结构,带有标签,大小可变,且能够包含异构的数据列 |
DataFrame能够看作是Series的容器,即:一个DataFrame中能够包含若干个Series。
注:在0.20.0版本以前,还有一个三维的数据结构,名称为Panel。这也是pandas库取名的缘由:pan(el)-da(ta)-s。但这种数据结构因为不多被使用到,所以已经被废弃了。
因为Series是一维结构的数据,咱们能够直接经过数组来建立这种数据,像这样:
# data_structure.py import pandas **as** pd import numpy **as** np series1= pd.Series([1, 2, 3, 4]) print("series1:\n{}\n".format(series1))
这段代码输出以下:
series1: 0 1 1 2 2 3 3 4 dtype: int64
这段输出说明以下:
· 输出的最后一行是Series中数据的类型,这里的数据都是int64类型的。
· 数据在第二列输出,第一列是数据的索引,在pandas中称之为Index。
咱们能够分别打印出Series中的数据和索引:
# data_structure.py print("series1.values: {}\n".format(series1.values)) print("series1.index: {}\n".format(series1.index))
这两行代码输出以下:
series1.values: [1 2 3 4] series1.index: RangeIndex(start=0, stop=4, step=1)
若是不指定(像上面这样),索引是[1, N-1]的形式。不过咱们也能够在建立Series的时候指定索引。索引未必必定须要是整数,能够是任何类型的数据,例如字符串。例如咱们以七个字母来映射七个音符。索引的目的是能够经过它来获取对应的数据,例以下面这样:
# data_structure.py series2= pd.Series([1, 2, 3, 4, 5, 6, 7], index=["C", "D", "E", "F", "G", "A", "B"]) print("series2:\n{}\n".format(series2)) print("E is {}\n".format(series2["E"]))
这段代码输出以下:
series2: C 1 D 2 E 3 F 4 G 5 A 6 B 7 dtype: int64 E **is** 3
下面咱们来看一下DataFrame的建立。咱们能够经过NumPy的接口来建立一个4×4的矩阵,以此来建立一个DataFrame,像这样:
# data_structure.py df1= pd.DataFrame(np.arange(16).reshape(4,4)) print("df1:\n{}\n".format(df1))
这段代码输出以下:
df1: 0 1 2 3 0 0 1 2 3 1 4 5 6 7 2 8 9 10 11 3 12 13 14 15
从这个输出咱们能够看到,默认的索引和列名都是[0, N-1]的形式。
咱们能够在建立DataFrame的时候指定列名和索引,像这样:
# data_structure.py df2= pd.DataFrame(np.arange(16).reshape(4,4), columns=["column1", "column2", "column3", "column4"], index=["a", "b", "c", "d"]) print("df2:\n{}\n".format(df2))
这段代码输出以下:
df2: column1 column2 column3 column4 a 0 1 2 3 b 4 5 6 7 c 8 9 10 11 d 12 13 14 15
咱们也能够直接指定列数据来建立DataFrame:
# data_structure.py df3= pd.DataFrame({"note": ["C", "D", "E", "F", "G", "A", "B"], "weekday": ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]}) print("df3:\n{}\n".format(df3))
这段代码输出以下:
df3: note weekday 0 C Mon 1 D Tue 2 E Wed 3 F Thu 4 G Fri 5 A Sat 6 B Sun
请注意:
· DataFrame的不一样列能够是不一样的数据类型
· 若是以Series数组来建立DataFrame,每一个Series将成为一行,而不是一列
例如:
# data_structure.py noteSeries= pd.Series(["C", "D", "E", "F", "G", "A", "B"], index=[1, 2, 3, 4, 5, 6, 7]) weekdaySeries= pd.Series(["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"], index=[1, 2, 3, 4, 5, 6, 7]) df4= pd.DataFrame([noteSeries, weekdaySeries]) print("df4:\n{}\n".format(df4))
df4的输出以下:
df4: 1 2 3 4 5 6 7 0 C D E F G A B 1 Mon Tue Wed Thu Fri Sat Sun
咱们能够经过下面的形式给DataFrame添加或者删除列数据:
# data_structure.py df3["No."]= pd.Series([1, 2, 3, 4, 5, 6, 7]) print("df3:\n{}\n".format(df3)) del df3["weekday"] print("df3:\n{}\n".format(df3))
这段代码输出以下:
df3: note weekday No. 0 C Mon 1 1 D Tue 2 2 E Wed 3 3 F Thu 4 4 G Fri 5 5 A Sat 6 6 B Sun 7 df3: note No. 0 C 1 1 D 2 2 E 3 3 F 4 4 G 5 5 A 6 6 B 7
pandas的Index对象包含了描述轴的元数据信息。当建立Series或者DataFrame的时候,标签的数组或者序列会被转换成Index。能够经过下面的方式获取到DataFrame的列和行的Index对象:
# data_structure.py print("df3.columns\n{}\n".format(df3.columns)) print("df3.index\n{}\n".format(df3.index))
这两行代码输出以下:
df3.columns Index(['note', 'No.'], dtype='object') df3.index RangeIndex(start=0, stop=7, step=1)
请注意:
· Index并不是集合,所以其中能够包含重复的数据
· Index对象的值是不能够改变,所以能够经过它安全的访问数据
DataFrame提供了下面两个操做符来访问其中的数据:
· loc:经过行和列的索引来访问数据
· iloc:经过行和列的下标来访问数据
例如这样:
# data_structure.py print("Note C, D is:\n{}\n".format(df3.loc[[0, 1], "note"])) print("Note C, D is:\n{}\n".format(df3.iloc[[0, 1], 0]))
第一行代码访问了行索引为0和1,列索引为“note”的元素。第二行代码访问了行下标为0和1(对于df3来讲,行索引和行下标恰好是同样的,因此这里都是0和1,但它们倒是不一样的含义),列下标为0的元素。
这两行代码输出以下:
Note C, D **is**: 0 C 1 D Name: note, dtype: **object** Note C, D **is**: 0 C 1 D Name: note, dtype: **object**
pandas库提供了一系列的read_函数来读取各类格式的文件,它们以下所示:
read_csv
read_table
read_fwf
read_clipboard
read_excel
read_hdf
read_html
read_json
read_msgpack
read_pickle
read_sas
read_sql
read_stata
read_feather
注:要读取Excel文件,还须要安装另一个库:xlrd
经过pip能够这样完成安装:
sudo pip3 install xlrd
安装完以后能够经过pip查看这个库的信息:
$ pip3 show xlrd Name: xlrd Version: 1.1.0 Summary: Library **for** developers **to** extract data from Microsoft Excel (tm) spreadsheet files Home-page: http:*//www.python-excel.org/* Author: John Machin Author-email: sjmachin@lexicon.net License: BSD Location: /Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages Requires:
接下来咱们看一个读取Excel的简单的例子:
# file_operation.py import pandas **as** pd import numpy **as** np df1= pd.read_excel("data/test.xlsx") print("df1:\n{}\n".format(df1))
这个Excel的内容以下:
df1: C Mon 0 D Tue 1 E Wed 2 F Thu 3 G Fri 4 A Sat 5 B Sun
注:本文的代码和数据文件能够经过文章开头提到的Github仓库获取。
下面,咱们再来看读取CSV文件的例子。
第一个CSV文件内容以下:
$ cat test1.csv C,Mon D,Tue E,Wed F,Thu G,Fri A,Sat
读取的方式也很简单:
# file_operation.py df2= pd.read_csv("data/test1.csv") print("df2:\n{}\n".format(df2))
咱们再来看第2个例子,这个文件的内容以下:
$ cat test2.csv C|Mon D|Tue E|Wed F|Thu G|Fri A|Sat
严格的来讲,这并非一个CSV文件了,由于它的数据并非经过逗号分隔的。在这种状况下,咱们能够经过指定分隔符的方式来读取这个文件,像这样:
# file_operation.py df3= pd.read_csv("data/test2.csv", sep="|") print("df3:\n{}\n".format(df3))
实际上,read_csv支持很是多的参数用来调整读取的参数,以下表所示:
参数 | 说明 |
---|---|
path | 文件路径 |
sep或者delimiterFrame | 字段分隔符 |
header | 列名的行数,默认是0(第一行) |
index_col | 列号或名称用做结果中的行索引 |
names | 结果的列名称列表 |
skiprows | 从起始位置跳过的行数 |
na_values | 代替NA的值序列 |
comment | 以行结尾分隔注释的字符 |
parse_dates | 尝试将数据解析为datetime。默认为False |
keep_date_col | 若是将列链接到解析日期,保留链接的列。默认为False。 |
converters | 列的转换器 |
dayfirst | 当解析能够形成歧义的日期时,之内部形式存储。默认为False |
data_parser | 用来解析日期的函数 |
nrows | 从文件开始读取的行数 |
参数 | 说明 |
---|---|
iterator | 返回一个TextParser对象,用于读取部份内容 |
chunksize | 指定读取块的大小 |
skip_footer | 文件末尾须要忽略的行数 |
verbose | 输出各类解析输出的信息 |
encoding | 文件编码 |
skip_footer | 文件编码 |
squeeze | 若是解析的数据只包含一列,则返回一个Series |
thousands | 千数量的分隔符 |
详细的read_csv函数说明请参见这里:pandas.read_csv
现实世界并不是完美,咱们读取到的数据经常会带有一些无效值。若是没有处理好这些无效值,将对程序形成很大的干扰。
对待无效值,主要有两种处理方法:直接忽略这些无效值;或者将无效值替换成有效值。
下面我先建立一个包含无效值的数据结构。而后经过pandas.isna函数来确认哪些值是无效的:
# process_na.py import pandas as pd import numpy as np df = pd.DataFrame([[1.0, np.nan, 3.0, 4.0], [5.0, np.nan, np.nan, 8.0], [9.0, np.nan, np.nan, 12.0], [13.0, np.nan, 15.0, 16.0]]) print("df:\n{}\n".format(df)); print("df:\n{}\n".format(pd.isna(df)));****
这段代码输出以下:
df: 0 1 2 3 0 1.0 NaN 3.0 4.0 1 5.0 NaN NaN 8.0 2 9.0 NaN NaN 12.0 3 13.0 NaN 15.0 16.0 df: 0 1 2 3 0 False True False False 1 False True True False 2 False True True False 3 False True False False
忽略无效值
咱们能够经过pandas.DataFrame.dropna函数抛弃无效值:
# process_na.py print("df.dropna():\n{}\n".format(df.dropna()));
注:dropna默认不会改变原先的数据结构,而是返回了一个新的数据结构。若是想要直接更改数据自己,能够在调用这个函数的时候传递参数 inplace = True。
对于原先的结构,当无效值所有被抛弃以后,将再也不是一个有效的DataFrame,所以这行代码输出以下:
df.dropna(): Empty DataFrame Columns: [0, 1, 2, 3] Index: []
咱们也能够选择抛弃整列都是无效值的那一列:
# process_na.py print("df.dropna(axis=1, how='all'):\n{}\n".format(df.dropna(axis=1, how='all')));
注:axis=1表示列的轴。how能够取值’any’或者’all’,默认是前者。
这行代码输出以下:
df.dropna(axis=1, how='all'): 0 2 3 0 1.0 3.0 4.0 1 5.0 NaN 8.0 2 9.0 NaN 12.0 3 13.0 15.0 16.0
替换无效值
咱们也能够经过fillna函数将无效值替换成为有效值。像这样:
# process_na.py print("df.fillna(1):\n{}\n".format(df.fillna(1)));
这段代码输出以下:
df.fillna(1): 0 1 2 3 0 1.0 1.0 3.0 4.0 1 5.0 1.0 1.0 8.0 2 9.0 1.0 1.0 12.0 3 13.0 1.0 15.0 16.0
将无效值所有替换成一样的数据可能意义不大,所以咱们能够指定不一样的数据来进行填充。为了便于操做,在填充以前,咱们能够先经过rename方法修改行和列的名称:
# process_na.py df.rename(index={0: 'index1', 1: 'index2', 2: 'index3', 3: 'index4'}, columns={0: 'col1', 1: 'col2', 2: 'col3', 3: 'col4'}, inplace=True); df.fillna(value={'col2': 2}, inplace=True) df.fillna(value={'col3': 7}, inplace=True) print("df:\n{}\n".format(df));
这段代码输出以下:
df: col1 col2 col3 col4 index1 1.0 2.0 3.0 4.0 index2 5.0 2.0 7.0 8.0 index3 9.0 2.0 7.0 12.0 index4 13.0 2.0 15.0 16.0
处理字符串
数据中经常牵涉到字符串的处理,接下来咱们就看看pandas对于字符串操做。
Series的str字段包含了一系列的函数用来处理字符串。而且,这些函数会自动处理无效值。
下面是一些实例,在第一组数据中,咱们故意设置了一些包含空格字符串:
# process_string.py import pandas as pd s1 = pd.Series([' 1', '2 ', ' 3 ', '4', '5']); print("s1.str.rstrip():\n{}\n".format(s1.str.lstrip())) print("s1.str.strip():\n{}\n".format(s1.str.strip())) print("s1.str.isdigit():\n{}\n".format(s1.str.isdigit()))
在这个实例中咱们看到了对于字符串strip的处理以及判断字符串自己是不是数字,这段代码输出以下:
s1.str.rstrip(): 0 1 1 2 2 3 3 4 4 5 dtype: object s1.str.strip(): 0 1 1 2 2 3 3 4 4 5 dtype: object s1.str.isdigit(): 0 False 1 False 2 False 3 True 4 True dtype: bool
下面是另一些示例,展现了对于字符串大写,小写以及字符串长度的处理:
# process_string.py s2 = pd.Series(['Stairway to Heaven', 'Eruption', 'Freebird', 'Comfortably Numb', 'All Along the Watchtower']) print("s2.str.lower():\n{}\n".format(s2.str.lower())) print("s2.str.upper():\n{}\n".format(s2.str.upper())) print("s2.str.len():\n{}\n".format(s2.str.len()))
该段代码输出以下:
s2.str.lower(): 0 stairway to heaven 1 eruption 2 freebird 3 comfortably numb 4 all along the watchtower dtype: object s2.str.upper(): 0 STAIRWAY TO HEAVEN 1 ERUPTION 2 FREEBIRD 3 COMFORTABLY NUMB 4 ALL ALONG THE WATCHTOWER dtype: object s2.str.len(): 0 18 1 8 2 8 3 16 4 24 dtype: int64
本文是pandas的入门教程,所以咱们只介绍了最基本的操做。对于
MultiIndex/Advanced Indexing
Merge, join, concatenate
Computational tools
之类的高级功能,之后有机会咱们再来一块儿学习。
读者也能够根据下面的连接获取更多的知识。
更多Python技术文章请关注2019年,Python技术持续更新(附教程)