在笔者最开始维护的日志服务中,日质量较小,没有接入kafka。随着业务规模扩增,日质量不断增加,接入到日志服务的产品线不断增多,遇到流量高峰,写入到es的性能就会下降,cpu打满,随时都有集群宕机的风险。所以,接入消息队列,进行削峰填谷就迫在眉睫。本文主要介绍在EFK的基础上如何接入kafka,并作到向前兼容。html
主要参考文章:【zookeeper安装指南】
因为是要线上搭建集群,为避免单点故障,就须要部署至少3个节点(取决于多数选举机制)。java
进入要下载的版本的目录,选择.tar.gz文件下载apache
使用tar解压要安装的目录便可,以3.4.5版本为例
这里以解压到/home/work/common,实际安装根据本身的想安装的目录修改(注意若是修改,那后边的命令和配置文件中的路径都要相应修改)json
tar -zxf zookeeper-3.4.5.tar.gz -C /home/work/common
在主目录下建立data和logs两个目录用于存储数据和日志:bootstrap
cd /home/work/zookeeper-3.4.5 mkdir data mkdir logs
在conf目录下新建zoo.cfg文件,写入以下配置:安全
tickTime=2000 dataDir=/home/work/common/zookeeper1/data dataLogDir=/home/work/common/zookeeper1/logs clientPort=2181 initLimit=5 syncLimit=2 server.1=192.168.220.128:2888:3888 server.2=192.168.222.128:2888:3888 server.3=192.168.223.128:2888:3888
在zookeeper1的data/myid配置以下:curl
echo '1' > data/myid
zookeeper2的data/myid配置以下:socket
echo '2' > data/myid
zookeeper2的data/myid配置以下:工具
echo '3' > data/myid
进入bin目录,启动、中止、重启分和查看当前节点状态(包括集群中是何角色)别执行:性能
./zkServer.sh start ./zkServer.sh stop ./zkServer.sh restart ./zkServer.sh status
zookeeper集群搭建完成以后,根据实际状况开始部署kafka。以部署2个broker为例。
下载并解压包:
curl -L -O http://mirrors.cnnic.cn/apache/kafka/0.9.0.0/kafka_2.10-0.9.0.0.tgz
tar zxvf kafka_2.10-0.9.0.0.tgz
进入kafka安装工程根目录编辑config/server.properties
#不一样的broker对应的id不能重复 broker.id=1 delete.topic.enable=true inter.broker.protocol.version=0.10.0.1 log.message.format.version=0.10.0.1 listeners=PLAINTEXT://:9092,SSL://:9093 auto.create.topics.enable=false ssl.key.password=test ssl.keystore.location=/home/work/certificate/server-keystore.jks ssl.keystore.password=test ssl.truststore.location=/home/work/certificate/server-truststore.jks ssl.truststore.password=test num.network.threads=3 num.io.threads=8 socket.send.buffer.bytes=102400 socket.receive.buffer.bytes=102400 socket.request.max.bytes=104857600 log.dirs=/home/work/data/kafka/log num.partitions=1 num.recovery.threads.per.data.dir=1 offsets.topic.replication.factor=1 transaction.state.log.replication.factor=1 transaction.state.log.min.isr=1 log.retention.hours=72 log.segment.bytes=1073741824 log.retention.check.interval.ms=300000 zookeeper.connect=192.168.220.128:2181,192.168.222.128:2181,192.168.223.128:2181 zookeeper.connection.timeout.ms=6000 group.initial.rebalance.delay.ms=0
进入kafka的主目录
nohup sh bin/kafka-server-start.sh config/server.properties > /dev/null 2>&1 &
首先建立一个topic:topic_1
sh bin/kafka-topics.sh --create --topic topic_1 --partitions 2 --replication-factor 2 --zookeeper 192.168.220.128:2181
能够先检查一下是否建立成功:
sh bin/kafka-topics.sh --list --zookeeper 192.168.220.128:2181
起两个终端,一个做为producer,一个做为consumer
生产消息:
bin/kafka-console-producer.sh --topic topic_1 --broker-list 192.168.220.128:9092,192.168.223.128:9092
消费消息:
sh bin/kafka-console-consumer.sh --bootstrap-server 192.168.220.128:9092,192.168.223.128:9092 --topic topic_1
好了,上面的调通了,万里长征第一步就走完了。
在以前的EFK中是经过证书进行安全加固的,因此要先为接入kafka准备一下相关的证书。要确保给kafka生成的证书和给efk生成的证书是同一个根证书。关于证书的生成,笔者会写文章专门介绍。主要包括:
那么做为kafka的输入(filebeat)和输出(logstash),都须要kafka的client证书,kafka的broker须要的是服务端证书。
须要注意的是,filebeat配置的是pem证书,kafka和logstash的kafka-input插件用的是jks证书~~~所以,证书生成工具最好须要可以同时生成这两种证书。
在fields中添加log_topic字段,指定写入的topic
fields: module: sonofelice type: debug log_topic: topic_1 language: java
output.kafka: hosts: ["192.168.220.128:9093","192.168.223.128:9093"] topic: '%{[fields.log_topic]}' partition.round_robin: reachable_only: false required_acks: 1 compression: gzip max_message_bytes: 1000000 ssl.certificate_authorities: ["/home/work/filebeat/keys/root-ca.pem"] ssl.certificate: "/home/work/filebeat/keys/kafka.crt.pem" ssl.key: "/home/work/filebeat/keys/kafka.key.pem"
input { kafka { bootstrap_servers => "10.100.27.199:9093,10.64.56.75:9093" group_id => "consumer-group-01" topics => ["topic_1"] consumer_threads => 5 decorate_events => false auto_offset_reset => "earliest" security_protocol => "SSL" ssl_keystore_password => "test" ssl_keystore_location => "/home/work/certificate/kafka-keystore.jks" ssl_keystore_password => "test" ssl_truststore_password => "test" ssl_truststore_location => "/home/work/cvca/certificate/truststore.jks" codec => json { charset => "UTF-8" } } }
那为了向前兼容以前的filebeat日志收集,咱们在input中同时保留beats配置,最终配置以下:
input { kafka { bootstrap_servers => "192.168.220.128:9093,192.168.223.128:9093" group_id => "consumer-group-01" topics => ["topic_1"] consumer_threads => 5 decorate_events => false auto_offset_reset => "earliest" security_protocol => "SSL" ssl_keystore_password => "test" ssl_keystore_location => "/home/work/certificate/kafka-keystore.jks" ssl_keystore_password => "test" ssl_truststore_password => "test" ssl_truststore_location => "/home/work/cvca/certificate/truststore.jks" codec => json { charset => "UTF-8" } } beats { port => 5044 client_inactivity_timeout => 600 ssl => true ssl_certificate_authorities => ["/home/work/certificate/chain-ca.pem"] ssl_certificate => "/home/work/certificate/server.crt.pem" ssl_key => "/home/work/certificate/server.key.pem" ssl_verify_mode => "force_peer" } }
须要特别注意的是,对于kafka的input来讲,codec并非默认为json的,致使以前用beats能成功解析到es的字段都没法解析成功,因此务必加上codec的配置。
至此,改造升级的点应该没有太大的坑了,也可以向前兼容,接入端自行切换便可。