安装Scalahtml
使用spark-shell命令进入shell模式,查看spark版本和Scala版本:java
下载Scala2.10.5node
wget https://downloads.lightbend.com/scala/2.10.5/scala-2.10.5.tgz
解压git
tar -xzvf scala-2.10.5.tgz
建立文件夹github
mkdir -p /usr/local/scala
cp -r scala-2.10.5 /usr/local/scala
配置环境web
vim /etc/profile
添加内容sql
export SCALA_HOME=/usr/local/scala/scala-2.10.5 export PATH=$PATH:$JAVA_HOME/bin:$PHOENIX_PATH/bin:$M2_HOME/bin:$SCALA_HOME/bin
生效shell
source /etc/profile
验证安装成功apache
安装Mavenvim
参考:http://www.javashuo.com/article/p-zkkpnqtd-be.html
只是默认使用Maven中央仓库,不用另外添加Maven中央仓库的镜像;中央仓库虽然慢,可是内容全;镜像虽然速度快,可是内容有欠缺。
安装HiBench
获取源码
wget https://codeload.github.com/Intel-bigdata/HiBench/zip/master
进入文件夹下,执行如下命令进行安装
(参考:https://github.com/Intel-bigdata/HiBench ; https://github.com/Intel-bigdata/HiBench/blob/master/docs/build-hibench.md)
mvn -Phadoopbench -Psparkbench -Dspark=1.6 -Dscala=2.10 clean package
报错:
Plugin org.apache.maven.plugins:maven-clean-plugin:2.5 or one of its dependencies could not be
The POM for org.apache.maven.plugins:maven-clean-plugin:jar:2.5 is invalid, transitive dependencies (if any) will not be available
解决方法(参考:https://blog.csdn.net/expect521/article/details/75663221):
(1)删除plugin目录下的文件夹,从新生成;
(2)设置Maven中央仓库为源;
编译后返回以下信息:
[INFO] ------------------------------------------------------------------------ [INFO] Reactor Summary: [INFO] [INFO] hibench 7.1-SNAPSHOT ............................... SUCCESS [ 40.848 s] [INFO] hibench-common 7.1-SNAPSHOT ........................ SUCCESS [33:57 min] [INFO] HiBench data generation tools 7.1-SNAPSHOT ......... SUCCESS [02:06 min] [INFO] sparkbench 7.1-SNAPSHOT ............................ SUCCESS [ 0.014 s] [INFO] sparkbench-common 7.1-SNAPSHOT ..................... SUCCESS [02:37 min] [INFO] sparkbench micro benchmark 7.1-SNAPSHOT ............ SUCCESS [ 6.316 s] [INFO] sparkbench machine learning benchmark 7.1-SNAPSHOT . SUCCESS [02:25 min] [INFO] sparkbench-websearch 7.1-SNAPSHOT .................. SUCCESS [ 3.217 s] [INFO] sparkbench-graph 7.1-SNAPSHOT ...................... SUCCESS [ 43.669 s] [INFO] sparkbench-sql 7.1-SNAPSHOT ........................ SUCCESS [ 50.434 s] [INFO] sparkbench-streaming 7.1-SNAPSHOT .................. SUCCESS [ 11.003 s] [INFO] sparkbench project assembly 7.1-SNAPSHOT ........... SUCCESS [ 28.359 s] [INFO] hadoopbench 7.1-SNAPSHOT ........................... SUCCESS [ 0.005 s] [INFO] hadoopbench-sql 7.1-SNAPSHOT ....................... FAILURE [33:22 min] [INFO] mahout 7.1-SNAPSHOT ................................ SKIPPED [INFO] PEGASUS: A Peta-Scale Graph Mining System 2.0-SNAPSHOT SKIPPED [INFO] nutchindexing 7.1-SNAPSHOT ......................... SKIPPED [INFO] ------------------------------------------------------------------------ [INFO] BUILD FAILURE [INFO] ------------------------------------------------------------------------ [INFO] Total time: 01:17 h [INFO] Finished at: 2019-06-03T17:29:40+08:00 [INFO] ------------------------------------------------------------------------ [ERROR] Failed to execute goal com.googlecode.maven-download-plugin:download-maven-plugin:1.2.0:wget (default) on project hadoopbench-sql: IO Error: Could not get content -> [Help 1] [ERROR] [ERROR] To see the full stack trace of the errors, re-run Maven with the -e switch. [ERROR] Re-run Maven using the -X switch to enable full debug logging. [ERROR] [ERROR] For more information about the errors and possible solutions, please read the following articles: [ERROR] [Help 1] http://cwiki.apache.org/confluence/display/MAVEN/MojoExecutionException [ERROR] [ERROR] After correcting the problems, you can resume the build with the command [ERROR] mvn <goals> -rf :hadoopbench-sql
错误缘由是:
[WARNING] Could not get content org.apache.maven.wagon.TransferFailedException: Connect to archive.apache.org:80 [archive.apache.org/163.172.17.199] failed: Connection timed out (Connection timed out) Caused by: java.net.ConnectException: Connection timed out (Connection timed out) [WARNING] Retrying (1 more) Downloading: http://archive.apache.org/dist/hive/hive-0.14.0//apache-hive-0.14.0-bin.tar.gz java.net.SocketTimeoutException: Read timed out
本人手动去下载文件:http://archive.apache.org/dist/hive/hive-0.14.0//apache-hive-0.14.0-bin.tar.gz ,依然没法下载,说明是文件地址问题!
已经构建的模块暂时可以知足需求,先略过该问题。
建立并修改配置文件hadoop.conf
cp conf/hadoop.conf.template conf/hadoop.conf
而后修改配置文件: vim hadoop.conf
参考:https://github.com/Intel-bigdata/HiBench/blob/master/docs/run-hadoopbench.md ;http://www.javashuo.com/article/p-zfooxzpu-bb.html ;https://blog.csdn.net/xiaoxiaojavacsdn/article/details/80235078
1 # Hadoop home 2 hibench.hadoop.home /opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/hadoop 3 4 # The path of hadoop executable 5 hibench.hadoop.executable /opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/bin/hadoop 6 7 # Hadoop configraution directory 8 hibench.hadoop.configure.dir /etc/hadoop/conf.cloudera.yarn 9 10 # The root HDFS path to store HiBench data 11 hibench.hdfs.master hdfs://node1:8020 12 13 #hdfs://localhost:8020 14 #hdfs://localhost:9000 15 16 # Hadoop release provider. Supported value: apache, cdh5, hdp 17 hibench.hadoop.release cdh5
注意:
1.hibench.hadoop.home是你本机上hadoop的安装路径。
2.在配置hibench.hdfs.master的时候我傻傻地写了hdfs://localhost:8020,致使后来运行脚本一直不成功。
首先localhost是你的机器的IP,后面的端口号多是8020也多是9000,要根据本机的具体状况,在命令行输入vim /etc/hadoop/conf.cloudera.yarn/core-site.xml,能够观察到
1 <?xml version="1.0" encoding="UTF-8"?> 2 3 <!--Autogenerated by Cloudera Manager--> 4 <configuration> 5 <property> 6 <name>fs.defaultFS</name> 7 <value>hdfs://node1:8020</value> 8 </property>
接下来就是在HiBench下运行脚本,好比:
bin/workloads/micro/wordcount/prepare/prepare.sh
在HDFS中建立好目录
su hdfs hadoop dfs -mkdir /HiBench/Wordcount hadoop dfs -mkdir /HiBench/Wordcount/Input
目录建立好之后执行脚本,报错:
rm: Permission denied: user=root, access=WRITE, inode="/HiBench/Wordcount":hdfs:supergroup:drwxr-xr-x
缘由:
root对hdfs建立的文件目录没有访问权限!
bash-4.2$ hadoop fs -ls / Found 5 items drwxr-xr-x - hdfs supergroup 0 2019-06-04 16:07 /HiBench drwxr-xr-x - hdfs supergroup 0 2019-04-03 16:57 /benchmarks drwxr-xr-x - hbase hbase 0 2019-05-16 14:20 /hbase drwxrwxrwt - hdfs supergroup 0 2019-05-16 15:50 /tmp drwxr-xr-x - hdfs supergroup 0 2019-04-28 21:04 /user
解决方法:
(1 可选)参考:https://blog.csdn.net/dingding_ting/article/details/84955325
hadoop dfsadmin -safemode leave
(2)参考:http://www.javashuo.com/article/p-xaamfxiu-kb.html
hdfs dfs -chown -R root /HiBench
权限修正:
bash-4.2$ hadoop fs -ls / Found 5 items drwxr-xr-x - root supergroup 0 2019-06-04 16:07 /HiBench drwxr-xr-x - hdfs supergroup 0 2019-04-03 16:57 /benchmarks drwxr-xr-x - hbase hbase 0 2019-05-16 14:20 /hbase drwxrwxrwt - hdfs supergroup 0 2019-05-16 15:50 /tmp drwxr-xr-x - hdfs supergroup 0 2019-04-28 21:04 /user
再次执行脚本,返回结果信息:
[root@node1 prepare]# ./prepare.sh patching args= Parsing conf: /home/cf/app/HiBench-master/conf/hadoop.conf Parsing conf: /home/cf/app/HiBench-master/conf/hibench.conf Parsing conf: /home/cf/app/HiBench-master/conf/workloads/micro/wordcount.conf probe sleep jar: /opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/hadoop/../../jars/hadoop-mapreduce-client-jobclient-2.6.0-cdh5.14.2-tests.jar start HadoopPrepareWordcount bench hdfs rm -r: /opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/bin/hadoop --config /etc/hadoop/conf.cloudera.yarn fs -rm -r -skipTrash hdfs://node1:8020/HiBench/Wordcount/Input Deleted hdfs://node1:8020/HiBench/Wordcount/Input Submit MapReduce Job: /opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/bin/hadoop --config /etc/hadoop/conf.cloudera.yarn jar /opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/hadoop/../../jars/hadoop-mapreduce-examples-2.6.0-cdh5.14.2.jar randomtextwriter -D mapreduce.randomtextwriter.totalbytes=32000 -D mapreduce.randomtextwriter.bytespermap=4000 -D mapreduce.job.maps=8 -D mapreduce.job.reduces=8 hdfs://node1:8020/HiBench/Wordcount/Input The job took 11 seconds. finish HadoopPrepareWordcount bench
在 /home/cf/app/HiBench-master 目录下,执行脚本
bin/workloads/micro/wordcount/hadoop/run.sh
返回结果信息
[root@node1 hadoop]# ./run.sh patching args= Parsing conf: /home/cf/app/HiBench-master/conf/hadoop.conf Parsing conf: /home/cf/app/HiBench-master/conf/hibench.conf Parsing conf: /home/cf/app/HiBench-master/conf/workloads/micro/wordcount.conf probe sleep jar: /opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/hadoop/../../jars/hadoop-mapreduce-client-jobclient-2.6.0-cdh5.14.2-tests.jar start HadoopWordcount bench hdfs rm -r: /opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/bin/hadoop --config /etc/hadoop/conf.cloudera.yarn fs -rm -r -skipTrash hdfs://node1:8020/HiBench/Wordcount/Output rm: `hdfs://node1:8020/HiBench/Wordcount/Output': No such file or directory hdfs du -s: /opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/bin/hadoop --config /etc/hadoop/conf.cloudera.yarn fs -du -s hdfs://node1:8020/HiBench/Wordcount/Input Submit MapReduce Job: /opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/bin/hadoop --config /etc/hadoop/conf.cloudera.yarn jar /opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/hadoop/../../jars/hadoop-mapreduce-examples-2.6.0-cdh5.14.2.jar wordcount -D mapreduce.job.maps=8 -D mapreduce.job.reduces=8 -D mapreduce.inputformat.class=org.apache.hadoop.mapreduce.lib.input.SequenceFileInputFormat -D mapreduce.outputformat.class=org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat -D mapreduce.job.inputformat.class=org.apache.hadoop.mapreduce.lib.input.SequenceFileInputFormat -D mapreduce.job.outputformat.class=org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat hdfs://node1:8020/HiBench/Wordcount/Input hdfs://node1:8020/HiBench/Wordcount/Output Bytes Written=22308 finish HadoopWordcount bench
执行结束之后能够查看分析结果
/report/hibench.report
Type Date Time Input_data_size Duration(s) Throughput(bytes/s) Throughput/node HadoopWordcount 2019-06-04 16:59:04 37055 20.226 1832 610
\report\wordcount路径下有两个文件夹,分别对应执行了脚本/prepare/prepare.sh和
/hadoop/run.sh所产生的信息
\report\wordcount\prepare下有多个文件:monitor.log是原始日志,bench.log是Map-Reduce信息,monitor.html可视化了系统的性能信息,\conf\wordcount.conf本次任务的环境变量
\report\wordcount\hadoop下有多个文件:monitor.log是原始日志,bench.log是Map-Reduce信息,monitor.html可视化了系统的性能信息,\conf\wordcount.conf本次任务的环境变量
monitor.html中包含了Memory usage heatmap等统计图:
根据官方文档 https://github.com/Intel-bigdata/HiBench/blob/master/docs/run-hadoopbench.md ,还能够修改 hibench.scale.profile 调整测试的数据规模,修改 hibench.default.map.parallelism 和 hibench.default.shuffle.parallelism 调整并行化