基于哈希表的 Map 接口的实现。此实现提供全部可选的映射操做,并容许使用 null 值和 null 键。(除了非同步和容许使用 null 以外,HashMap 类与 Hashtable 大体相同。)此类不保证映射的顺序,特别是它不保证该顺序恒久不变。java
此实现假定哈希函数将元素适当地分布在各桶之间,可为基本操做(get 和 put)提供稳定的性能。迭代 collection 视图所需的时间与 HashMap 实例的“容量”(桶的数量)及其大小(键-值映射关系数)成比例。因此,若是迭代性能很重要,则不要将初始容量设置得过高(或将加载因子设置得过低)。算法
HashMap的实例有两个参数影响其性能:初始容量
和加载因子
。容量
是哈希表中桶的数量,初始容量
只是哈希表在建立时的容量。加载因子
是哈希表在其容量自动增长以前能够达到多满的一种尺度。当哈希表中的条目数超出了加载因子与当前容量的乘积时,则要对该哈希表进行 rehash 操做(即重建内部数据结构),从而哈希表将具备大约两倍的桶数。数组
一般,默认加载因子 (0.75)
在时间和空间成本上寻求一种折衷。加载因子太高虽然减小了空间开销,但同时也增长了查询成本(在大多数 HashMap 类的操做中,包括 get 和 put 操做,都反映了这一点)。在设置初始容量时应该考虑到映射中所需的条目数及其加载因子,以便最大限度地减小 rehash 操做次数。若是初始容量大于最大条目数除以加载因子,则不会发生 rehash 操做。安全
若是不少映射关系要存储在 HashMap 实例中,则相对于按需执行自动的 rehash 操做以增大表的容量来讲,使用足够大的初始容量建立它将使得映射关系能更有效地存储。数据结构
##HashMap的数据结构## HashMap用了一个名字为table的Entry类型数组;数组中的每一项又是一个Entry链表。 app
// 默认的初始化大小 static final int DEFAULT_INITIAL_CAPACITY = 16; // 最大的容量 static final int MAXIMUM_CAPACITY = 1 << 30; // 负载因子 static final float DEFAULT_LOAD_FACTOR = 0.75f; // 储存key-value键值对的数组,一个键值对对象映射一个Entry对象 transient Entry[] table; // 键值对的数目 transient int size; // 调整HashMap大小门槛,该变量包含了HashMap能容纳的key-value对的极限,它的值等于HashMap的容量乘以负载因子 int threshold; // 加载因子 final float loadFactor; // HashMap结构修改次数,防止在遍历时,有其余的线程在进行修改 transient volatile int modCount; public HashMap(int initialCapacity, float loadFactor) { if (initialCapacity < 0) throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity); if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new IllegalArgumentException("Illegal load factor: " + loadFactor); // Find a power of 2 >= initialCapacity int capacity = 1; // 使得capacity 的大小为2的幂,至于为何,请看下面 while (capacity < initialCapacity) capacity <<= 1; this.loadFactor = loadFactor; threshold = (int) (capacity * loadFactor); table = new Entry[capacity]; init(); }
下面是用于包装key-value映射关系的Entry,它是HashMap的静态内部类:函数
static class Entry<K,V> implements Map.Entry<K,V> { final K key; V value; Entry<K,V> next; int hash; /** * Creates new entry. */ Entry(int h, K k, V v, Entry<K,V> n) { value = v; next = n; key = k; hash = h; } public final K getKey() { return key; } public final V getValue() { return value; } public final V setValue(V newValue) { V oldValue = value; value = newValue; return oldValue; } public final boolean equals(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry e = (Map.Entry)o; Object k1 = getKey(); Object k2 = e.getKey(); if (k1 == k2 || (k1 != null && k1.equals(k2))) { Object v1 = getValue(); Object v2 = e.getValue(); if (v1 == v2 || (v1 != null && v1.equals(v2))) return true; } return false; } public final int hashCode() { return Objects.hashCode(getKey()) ^ Objects.hashCode(getValue()); } public final String toString() { return getKey() + "=" + getValue(); } /** * This method is invoked whenever the value in an entry is * overwritten by an invocation of put(k,v) for a key k that's already * in the HashMap. */ void recordAccess(HashMap<K,V> m) { } /** * This method is invoked whenever the entry is * removed from the table. */ void recordRemoval(HashMap<K,V> m) { } }
##HashMap的put和get及remove方法##性能
// 根据key获取value public V get(Object key) { if (key == null) return getForNullKey(); //根据key的hashCode值计算它的hash码 int hash = hash(key.hashCode()); //直接取出table数组中指定索引处的值 for (Entry<K, V> e = table[indexFor(hash, table.length)]; e != null; //搜索该Entry链的下一个Entry e = e.next) { Object k; //若是该Entry的key与被搜索key相同 if (e.hash == hash && ((k = e.key) == key || key.equals(k))) return e.value; } return null; } private V getForNullKey() { //key为null,hash码为0,也就是说key为null的Entry位于table[0]的Entry链上 for (Entry<K, V> e = table[0]; e != null; e = e.next) { if (e.key == null) return e.value; } return null; } public V put(K key, V value) { if (key == null) return putForNullKey(value); //根据key的hashCode值计算它的hash码 int hash = hash(key.hashCode()); //搜索指定hash值对应table中的索引值 int i = indexFor(hash, table.length); for (Entry<K, V> e = table[i]; e != null; e = e.next) { Object k; //若是找到指定key与须要放入的key相等(hash值相同,经过equals比较返回true) if (e.hash == hash && ((k = e.key) == key || key.equals(k))) { V oldValue = e.value; //新的值覆盖旧值 e.value = value; //这个方法是个空方法,多是表示个标记,字面意思是表示记录访问 e.recordAccess(this); //返回旧值 return oldValue; } } modCount++; //若是i处索引处的Entry为null,表示此处尚未Entry //将key、value添加到i索引处 addEntry(hash, key, value, i); return null; } //key=null的键值对,默认存放table[0]的Entry链 private V putForNullKey(V value) { for (Entry<K, V> e = table[0]; e != null; e = e.next) { if (e.key == null) { V oldValue = e.value; e.value = value; e.recordAccess(this); return oldValue; } } modCount++; addEntry(0, null, value, 0); return null; } void addEntry(int hash, K key, V value, int bucketIndex) { Entry<K, V> e = table[bucketIndex]; table[bucketIndex] = new Entry<K, V>(hash, key, value, e); if (size++ >= threshold) resize(2 * table.length); } //根据键值移除key-value映射对象 public V remove(Object key) { Entry<K, V> e = removeEntryForKey(key); return (e == null ? null : e.value); } final Entry<K, V> removeEntryForKey(Object key) { int hash = (key == null) ? 0 : hash(key.hashCode()); int i = indexFor(hash, table.length); Entry<K, V> prev = table[i]; Entry<K, V> e = prev; while (e != null) { Entry<K, V> next = e.next; Object k; if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) { modCount++; size--; if (prev == e) table[i] = next; else prev.next = next; //空方法,表示移除记录 e.recordRemoval(this); return e; } prev = e; e = next; } return e; }
##HashMap的hash算法和size大小调整##this
static int hash(int h) {//这里不是很懂,得向他人请教 // This function ensures that hashCodes that differ only by // constant multiples at each bit position have a bounded // number of collisions (approximately 8 at default load factor). h ^= (h >>> 20) ^ (h >>> 12); return h ^ (h >>> 7) ^ (h >>> 4); } /** * Returns index for hash code h. */ // 根据hash码求的数组小标并返回,当length为2的幂时,h & (length-1)等价于h%(length-1),这里也就是为何前面说table的长度必须是2的幂 static int indexFor(int h, int length) { return h & (length - 1); } // 调整大小 void resize(int newCapacity) { Entry[] oldTable = table; int oldCapacity = oldTable.length; if (oldCapacity == MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return; } Entry[] newTable = new Entry[newCapacity]; transfer(newTable); table = newTable; threshold = (int) (newCapacity * loadFactor); } /** * Transfers all entries from current table to newTable. */ void transfer(Entry[] newTable) { Entry[] src = table; int newCapacity = newTable.length; for (int j = 0; j < src.length; j++) { Entry<K, V> e = src[j]; if (e != null) { src[j] = null; do { //注意这里哈,HashMap不保证顺序恒久不变 //在这里能够找到答案 Entry<K, V> next = e.next; int i = indexFor(e.hash, newCapacity); e.next = newTable[i]; newTable[i] = e; e = next; } while (e != null); } } }
##HashMap与Set的关系## Set表明一种集合元素无序、集合元素不可重复的集合。若是只考察HashMap中的key,不难发现集合中的key有一个特征:全部的key不能重复,key之间无序。具有了Set的特征,全部的key集合起来组成一个Set集合。同理全部的Entry集合起来,也是一个Set集合。而value是能够重复的,不能组成一个Set集合,在HashMap源代码中提供了values()方法把value集合起来组成Collection集合。线程
private abstract class HashIterator<E> implements Iterator<E> { Entry<K, V> next; // next entry to return int expectedModCount; // For fast-fail int index; // current slot Entry<K, V> current; // current entry HashIterator() { expectedModCount = modCount; if (size > 0) { // advance to first entry Entry[] t = table; while (index < t.length && (next = t[index++]) == null) ; } } public final boolean hasNext() { return next != null; } final Entry<K, V> nextEntry() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); Entry<K, V> e = next; if (e == null) throw new NoSuchElementException(); if ((next = e.next) == null) { Entry[] t = table; while (index < t.length && (next = t[index++]) == null) ; } current = e; return e; } public void remove() { if (current == null) throw new IllegalStateException(); if (modCount != expectedModCount) throw new ConcurrentModificationException(); Object k = current.key; current = null; HashMap.this.removeEntryForKey(k); expectedModCount = modCount; } } private final class ValueIterator extends HashIterator<V> { public V next() { return nextEntry().value; } } private final class KeyIterator extends HashIterator<K> { public K next() { return nextEntry().getKey(); } } private final class EntryIterator extends HashIterator<Map.Entry<K, V>> { public Map.Entry<K, V> next() { return nextEntry(); } } Iterator<K> newKeyIterator() { return new KeyIterator(); } Iterator<V> newValueIterator() { return new ValueIterator(); } Iterator<Map.Entry<K, V>> newEntryIterator() { return new EntryIterator(); } // Views private transient Set<Map.Entry<K, V>> entrySet = null; //把全部的key集合成Set集合 public Set<K> keySet() { Set<K> ks = keySet; return (ks != null ? ks : (keySet = new KeySet())); } private final class KeySet extends AbstractSet<K> { public Iterator<K> iterator() { return newKeyIterator(); } public int size() { return size; } public boolean contains(Object o) { return containsKey(o); } public boolean remove(Object o) { return HashMap.this.removeEntryForKey(o) != null; } public void clear() { HashMap.this.clear(); } } //把全部的values集合成Collection集合 public Collection<V> values() { Collection<V> vs = values; return (vs != null ? vs : (values = new Values())); } private final class Values extends AbstractCollection<V> { public Iterator<V> iterator() { return newValueIterator(); } public int size() { return size; } public boolean contains(Object o) { return containsValue(o); } public void clear() { HashMap.this.clear(); } } //把全部的Entry对象集合成Set集合 public Set<Map.Entry<K, V>> entrySet() { return entrySet0(); } private Set<Map.Entry<K, V>> entrySet0() { Set<Map.Entry<K, V>> es = entrySet; return es != null ? es : (entrySet = new EntrySet()); } private final class EntrySet extends AbstractSet<Map.Entry<K, V>> { public Iterator<Map.Entry<K, V>> iterator() { return newEntryIterator(); } public boolean contains(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry<K, V> e = (Map.Entry<K, V>) o; Entry<K, V> candidate = getEntry(e.getKey()); return candidate != null && candidate.equals(e); } public boolean remove(Object o) { return removeMapping(o) != null; } public int size() { return size; } public void clear() { HashMap.this.clear(); } }
##Fail-Fast策略(速错)## HashMap不是线程安全的,所以若是在使用迭代器的过程当中有其余线程修改了map,那么将抛ConcurrentModificationException,这就是所谓fail-fast策略(速错),这一策略在源码中的实现是经过modCount域,modCount顾名思义就是修改次数,对HashMap内容的修改都将增长这个值,那么在迭代器初始化过程当中会将这个值赋给迭代器的expectedModCount。在迭代过程当中,判断modCount跟expectedModCount是否相等,若是不相等就表示已经有其余线程修改了。
private abstract class HashIterator<E> implements Iterator<E> { Entry<K, V> next; // next entry to return int expectedModCount; // For fast-fail int index; // current slot Entry<K, V> current; // current entry HashIterator() { expectedModCount = modCount; if (size > 0) { // advance to first entry Entry[] t = table; while (index < t.length && (next = t[index++]) == null) ; } } public final boolean hasNext() { return next != null; } final Entry<K, V> nextEntry() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); Entry<K, V> e = next; if (e == null) throw new NoSuchElementException(); if ((next = e.next) == null) { Entry[] t = table; while (index < t.length && (next = t[index++]) == null) ; } current = e; return e; } public void remove() { if (current == null) throw new IllegalStateException(); if (modCount != expectedModCount) throw new ConcurrentModificationException(); Object k = current.key; current = null; HashMap.this.removeEntryForKey(k); expectedModCount = modCount; } }