常用优化算法介绍

作者:Walker 在机器学习的世界中,通常我们会发现有很多问题并没有最优的解,或是要计算出最优的解要花费很大的计算量,面对这类问题一般的做法是利用迭代的思想尽可能的逼近问题的最优解。我们把解决此类优化问题的方法叫做优化算法,优化算法本质上是一种数学方法,常见的优化算法包括梯度下降法、牛顿法、Momentum、Nesterov Momentum、Adagrad、Adam等。其实大部分机器学习算法的
相关文章
相关标签/搜索