本文主要介绍BitMap的算法思想,以及开源工具类JavaEWAH、RoaringBitmap的简单用法。html
BitMap使用bit位
,来标记元素对应的Value。该算法可以节省存储空间
。java
假设一个场景,要存0-7之内的数字[3,5,6,1,2],尽量的节省空间。
一种思路就是单纯使用数组存储,但若是数据量放大百万倍甚至千万倍呢,数组的所占用的内存会很是大。
另外一种思路是使用BitMap
。git
表示[3,5,7,1,2],咱们能够用8bit的空间来存储,每一个数字都在对应的位置中以1的方式表示。github
位置7 | 位置 6 | 位置 5 | 位置 4 | 位置 3 | 位置 2 | 位置 1 | 位置 0 |
---|---|---|---|---|---|---|---|
1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 |
若将上述BitMap看做是存储用户的标签
,如信用卡逾期
标签,位置当作用户ID
,则若须要查询哪些用户有信用卡逾期的行为(标签),就很是容易查询统计了。算法
Bitsets, also called bitmaps, are commonly used as fast data structures. Unfortunately, they can use too much memory. To compensate, we often use compressed bitmaps.数组
BitMap一般被用做快速查询的数据结构,但它太占内存了。解决方案是,对BitMap进行压缩
。数据结构
Roaring bitmaps are compressed bitmaps which tend to outperform conventional compressed bitmaps such as WAH, EWAH or Concise. In some instances, roaring bitmaps can be hundreds of times faster and they often offer significantly better compression. They can even be faster than uncompressed bitmaps.工具
Roaring bitmaps是一种超常规的压缩BitMap。它的速度比未压缩的BitMap
快上百倍。测试
引入依赖google
<dependency> <groupId>org.roaringbitmap</groupId> <artifactId>RoaringBitmap</artifactId> <version>0.8.1</version> </dependency>
测试代码
@SpringBootTest @RunWith(SpringRunner.class) public class TestRoaringbitmap { @Test public void test(){ //向rr中添加一、二、三、1000四个数字 RoaringBitmap rr = RoaringBitmap.bitmapOf(1,2,3,1000); //建立RoaringBitmap rr2 RoaringBitmap rr2 = new RoaringBitmap(); //向rr2中添加10000-12000共2000个数字 rr2.add(10000L,12000L); //返回第3个数字是1000,第0个数字是1,第1个数字是2,则第3个数字是1000 rr.select(3); //返回value = 2 时的索引为 1。value = 1 时,索引是 0 ,value=3的索引为2 rr.rank(2); //判断是否包含1000 rr.contains(1000); // will return true //判断是否包含7 rr.contains(7); // will return false //两个RoaringBitmap进行or操做,数值进行合并,合并后产生新的RoaringBitmap叫rror RoaringBitmap rror = RoaringBitmap.or(rr, rr2); //rr与rr2进行位运算,并将值赋值给rr rr.or(rr2); //判断rror与rr是否相等,显然是相等的 boolean equals = rror.equals(rr); if(!equals) throw new RuntimeException("bug"); // 查看rr中存储了多少个值,1,2,3,1000和10000-12000,共2004个数字 long cardinality = rr.getLongCardinality(); System.out.println(cardinality); //遍历rr中的value for(int i : rr) { System.out.println(i); } //这种方式的遍历比上面的方式更快 rr.forEach((Consumer<? super Integer>) i -> { System.out.println(i.intValue()); }); } }
引入依赖
<dependency> <groupId>com.googlecode.javaewah</groupId> <artifactId>JavaEWAH</artifactId> <version>1.1.6</version> </dependency>
测试代码
@SpringBootTest @RunWith(SpringRunner.class) public class TestJavaEWAH { @Test public void test(){ EWAHCompressedBitmap ewahBitmap1 = EWAHCompressedBitmap.bitmapOf(0, 2, 55, 64, 1 << 30); EWAHCompressedBitmap ewahBitmap2 = EWAHCompressedBitmap.bitmapOf(1, 3, 64,1 << 30); //bitmap 1: {0,2,55,64,1073741824} System.out.println("bitmap 1: " + ewahBitmap1); //bitmap 2: {1,3,64,1073741824} System.out.println("bitmap 2: " + ewahBitmap2); //是否包含value=64,返回为true System.out.println(ewahBitmap1.get(64)); //获取value的个数,个数为5 System.out.println(ewahBitmap1.cardinality()); //遍历全部value ewahBitmap1.forEach(integer -> { System.out.println(integer); }); //进行位或运算 EWAHCompressedBitmap orbitmap = ewahBitmap1.or(ewahBitmap2); //返回bitmap 1 OR bitmap 2: {0,1,2,3,55,64,1073741824} System.out.println("bitmap 1 OR bitmap 2: " + orbitmap); //memory usage: 40 bytes System.out.println("memory usage: " + orbitmap.sizeInBytes() + " bytes"); //进行位与运算 EWAHCompressedBitmap andbitmap = ewahBitmap1.and(ewahBitmap2); //返回bitmap 1 AND bitmap 2: {64,1073741824} System.out.println("bitmap 1 AND bitmap 2: " + andbitmap); //memory usage: 32 bytes System.out.println("memory usage: " + andbitmap.sizeInBytes() + " bytes"); //序列化与反序列化 try { ByteArrayOutputStream bos = new ByteArrayOutputStream(); ewahBitmap1.serialize(new DataOutputStream(bos)); EWAHCompressedBitmap ewahBitmap1new = new EWAHCompressedBitmap(); byte[] bout = bos.toByteArray(); ewahBitmap1new.deserialize(new DataInputStream(new ByteArrayInputStream(bout))); System.out.println("bitmap 1 (recovered) : " + ewahBitmap1new); } catch (IOException e) { e.printStackTrace(); } } }
[1]: BitMap算法详解
[2]: 漫画:Bitmap算法 整合版
[3]: RoaringBitmap GitHub项目文档
[4]: JavaEWAH GitHub项目文档