过三点的圆

做者: 姚彧
版本历史:blog

版本 日期 说明
0.1 2019-05-28 建立文档

版权声明:本文为做者原创文章,博客地址:https://www.cnblogs.com/yaoyu126 未经做者容许不得转载。文档

圆的通常式

\(Ax^2+Ay^2 + Dx + Ey + F = 0 (D^2+E^2-4F>0)\)get

三点圆

基本性质1, 系数肯定

在替换位于圆上的三个给定点以后,咱们获得可由行列式描述的方程组:博客

\(\left|\begin{array}{cccc} x^2+y^2 & x & y & 1\\ x_1^2+y_1^2 & x_1 & y_1 & 1\\ x_2^2+y_2^2 & x_2 & y_2 & 1\\ x_3^2+y_3^2 & x_3 & y_3 & 1 \end{array}\right| = 0\)it

系数$ A,B,C和D$能够经过求解如下行列式:table

\(A=\left|\begin{array}{cccc} x_1 & y_1 & 1\\ x_2 & y_2 & 1\\ x_3 & y_3 & 1 \end{array}\right|\)class

\(B=-\left|\begin{array}{cccc} x_1^2+y_1^2 & y_1 & 1\\ x_2^2+y_2^2 & y_2 & 1\\ x_3^2+y_3^2 & y_3 & 1 \end{array}\right|\)im

\(C=\left|\begin{array}{cccc} x_1^2+y_1^2 & x_1 & 1\\ x_2^2+y_2^2 & x_2 & 1\\ x_3^2+y_3^2 & x_3 & 1 \end{array}\right|\)d3

\(D=-\left|\begin{array}{cccc} x_1^2+y_1^2 & x_1 & y_1\\ x_2^2+y_2^2 & x_2 & y_2\\ x_3^2+y_3^2 & x_3 & y_3 \end{array}\right|\)

基本性质2, 点与圆位置判断

\(P(x_p,y_p)\)为任意一点, 在替换位于圆上的三个给定点以后,咱们获得行列式:

\(P=\left|\begin{array}{cccc} x^2+y^2 & x & y & 1\\ x_1^2+y_1^2 & x_1 & y_1 & 1\\ x_2^2+y_2^2 & x_2 & y_2 & 1\\ x_3^2+y_3^2 & x_3 & y_3 & 1 \end{array}\right|\) 式1

\(\left\{\begin{aligned} P=0, 在圆上 \\ P>0, 在圆内\\ P<0, 在圆外 \end{aligned}\right.\)

各点平移\((-x_p,-y_p)\)

得新的\(P(0,0)\), \((x_0, y_0), (x_1,y_1), (x_2,y_2)\)代入式1得

\(P=\left|\begin{array}{cccc} 0 & 0 & 0 & 1\\ x_1^2+y_1^2 & x_1 & y_1 & 1\\ x_2^2+y_2^2 & x_2 & y_2 & 1\\ x_3^2+y_3^2 & x_3 & y_3 & 1 \end{array}\right|=\left|\begin{array}{cccc} x_1^2+y_1^2 & x_1 & y_1\\ x_2^2+y_2^2 & x_2 & y_2\\ x_3^2+y_3^2 & x_3 & y_3 \end{array}\right|\) 式2

化简后的计算公式更简单。

相关文章
相关标签/搜索