python中两个属相相关方法python
result = obj.name 会调用builtin函数getattr(obj,'name')查找对应属性,若是没有name属性则调用obj.__getattr__('name')方法,再无则报错函数
obj.name = value 会调用builtin函数setattr(obj,'name',value)设置对应属性,若是设置了__setattr__('name',value)方法则优先调用此方法,而非直接将值存入__dict__并新建属性ui
nn.Module中实现了__setattr__()方法,当再class的初始化__init__()中执行module.name=value时,会在其中判断value是否属于Parameters或者nn.Module对象,是则将之存储进入__dict__._parameters和__dict__._modules两个字典中;若是是其余对象诸如Variable、List、dict等等,则调用默认操做,将值直接存入__dict__中。对象
nn.Module的新建Parameter属性,在._parameters中能够查询到,在.__dict__中没有,属于.__dict__._parameters中blog
import torch as t import torch.nn as nn module = nn.Module() module.param = nn.Parameter(t.ones(2,2)) print(module._parameters) """ OrderedDict([('param', Parameter containing: 1 1 1 1 [torch.FloatTensor of size 2x2])]) """ print(module.__dict__) """ {'_backend': <torch.nn.backends.thnn.THNNFunctionBackend at 0x7f5dbcf8c160>, '_backward_hooks': OrderedDict(), '_buffers': OrderedDict(), '_forward_hooks': OrderedDict(), '_forward_pre_hooks': OrderedDict(), '_modules': OrderedDict(), '_parameters': OrderedDict([('param', Parameter containing: 1 1 1 1 [torch.FloatTensor of size 2x2])]), 'training': True} """
以一般List的格式传入的子Module直接从属于属于.__dict__,并未被_modules识别ip
submodule1 = nn.Linear(2,2) submodule2 = nn.Linear(2,2) module_list = [submodule1,submodule2] module.submodules = module_list print('_modules:',module_list) # _modules: [Linear (2 -> 2), Linear (2 -> 2)] print('__dict__[submodules]:',module.__dict__.get('submodules')) # __dict__[submodules]: [Linear (2 -> 2), Linear (2 -> 2)] print('__dict__[submodules]:',module.__dict__['submodules']) # __dict__[submodules]: [Linear (2 -> 2), Linear (2 -> 2)]
以ModuleList格式传入的子Module可被._modules识别,而不直接从属于.__dict__get
module_list = nn.ModuleList(module_list) module.submodules = module_list print(isinstance(module_list,nn.Module)) # True print(module._modules) """ OrderedDict([('submodules', ModuleList ( (0): Linear (2 -> 2) (1): Linear (2 -> 2) ))]) """ print(module.__dict__.get('submodules')) # None print(module.__dict__['submodules']) """ --------------------------------------------------------------------------- KeyError Traceback (most recent call last) <ipython-input-19-d4344afabcbf> in <module>() ----> 1 print(module.__dict__['submodules']) KeyError: 'submodules' """
nn.Module的.__getattr__()方法会对__dict__._module、__dict__._parameters和__dict__._buffers这三个字典中的key进行查询。当nn.Module进行属性查询时,会先在__dict__进行查询(仅查询本级),查询不到对应属性值时,就会调用.__getattr__()方法,再无结果就报错。input
对于__dict__中的属性.training,能够看到.__getattr__('training')查询时就没有结果,it
print(module.__dict__.get('submodules')) # None getattr(module,'training') # True module.training # True module.__getattr__('training') """ --------------------------------------------------------------------------- AttributeError Traceback (most recent call last) …… AttributeError: 'Module' object has no attribute 'training' """
另外,咱们能够看到.__getattr__能够查询到的结果以下,都是nn.Module自建的属性,io
module.__getattr__ """ <bound method Module.__getattr__ of Module ( (submodules): ModuleList ( (0): Linear (2 -> 2) (1): Linear (2 -> 2) ) )> """
对于普通的新建属性,其实和nn.Module自建的没什么不一样,不一样查询方式输出类似,
module.attr1 = 2 getattr(module,'attr1') # 2 module.__getattr__('attr1') """ --------------------------------------------------------------------------- AttributeError Traceback (most recent call last) …… AttributeError: 'Module' object has no attribute 'attr1' """
对于nn.Module的特殊属性,能够看到,getattr和.__getattr__都可查到,这也是因为getattr一次查找无果后,调用.__getattr__的结果,
getattr(module,'param') """ Parameter containing: 1 1 1 1 [torch.FloatTensor of size 2x2] """ module.__getattr__('param') """ Parameter containing: 1 1 1 1 [torch.FloatTensor of size 2x2] """