网络七层由下往上分别为物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。linux
其中物理层、数据链路层和网络层一般被称做媒体层,是网络工程师所研究的对象;服务器
传输层、会话层、表示层和应用层则被称做主机层,是用户所面向和关心的内容。网络
http协议对应于应用层并发
tcp协议对应于传输层dom
ip协议对应于网络层socket
三者本质上没有可比性。 况且HTTP协议是基于TCP链接的。tcp
TCP/IP是传输层协议,主要解决数据如何在网络中传输;而HTTP是应用层协议,主要解决如何包装数据。函数
我 们在传输数据时,能够只使用传输层(TCP/IP),可是那样的话,因为没有应用层,便没法识别数据内容,若是想要使传输的数据有意义,则必须使用应用层 协议,应用层协议不少,有HTTP、FTP、TELNET等等,也能够本身定义应用层协议。WEB使用HTTP做传输层协议,以封装HTTP文本信息,然 后使用TCP/IP作传输层协议将它发送到网络上。Socket是对TCP/IP协议的封装,Socket自己并非协议,而是一个调用接口(API),经过Socket,咱们才能使用TCP/IP协议。ui
相信很多初学手机联网开发的朋友都想知道Http与Socket链接究竟有什么区别,但愿经过本身的浅显理解能对初学者有所帮助。spa
2.一、TCP链接
要想明白Socket链接,先要明白TCP链接。手机可以使用联网功能是由于手机底层实现了TCP/IP协议,可使手机终端经过无线网络创建TCP链接。TCP协议能够对上层网络提供接口,使上层网络数据的传输创建在“无差异”的网络之上。
创建起一个TCP链接须要通过“三次握手”:
第一次握手:客户端发送syn包(syn=j)到服务器,并进入SYN_SEND状态,等待服务器确认;
第二次握手:服务器收到syn包,必须确认客户的SYN(ack=j+1),同时本身也发送一个SYN包(syn=k),即SYN+ACK包,此时服务器进入SYN_RECV状态;
第三次握手:客户端收到服务器的SYN+ACK包,向服务器发送确认包ACK(ack=k+1),此包发送完毕,客户端和服务器进入ESTABLISHED状态,完成三次握手。
握手过程当中传送的包里不包含数据,三次握手完毕后,客户端与服务器才正式开始传送数据。理想状态下,TCP链接一旦创建,在通讯双方中的任何一方主动关闭连
接以前,TCP链接都将被一直保持下去。断开链接时服务器和客户端都可以主动发起断开TCP链接的请求,断开过程须要通过“四次握手”
户端交互,最终肯定断开)
HTTP协议即超文本传送协议(HypertextTransfer Protocol ),是Web联网的基础,也是手机联网经常使用的协议之一,HTTP协议是创建在TCP协议之上的一种应用。
HTTP链接最显著的特色是客户端发送的每次请求都须要服务器回送响应,在请求结束后,会主动释放链接。从创建链接到关闭链接的过程称为“一次链接”。
1)在HTTP 1.0中,客户端的每次请求都要求创建一次单独的链接,在处理完本次请求后,就自动释放链接。
2)在HTTP 1.1中则能够在一次链接中处理多个请求,而且多个请求能够重叠进行,不须要等待一个请求结束后再发送下一个请求。
由
于HTTP在每次请求结束后都会主动释放链接,所以HTTP链接是一种“短链接”,要保持客户端程序的在线状态,须要不断地向服务器发起链接请求。一般的
作法是即时不须要得到任何数据,客户端也保持每隔一段固定的时间向服务器发送一
次“保持链接”的请求,服务器在收到该请求后对客户端进行回复,代表知道客
户端“在线”。若服务器长时间没法收到客户端的请求,则认为客户端“下线”,若客户端长时间没法收到服务器的回复,则认为网络已经断开。
套接字(socket)是通讯的基石,是支持TCP/IP协议的网络通讯的基本操做单元。它是网络通讯过程当中端点的抽象表示,包含进行网络通讯必须的五种信息:链接使用的协议,本地主机的IP地址,本地进程的协议端口,远地主机的IP地址,远地进程的协议端口。
应
用层经过传输层进行数据通讯时,TCP会遇到同时为多个应用程序进程提供并发服务的问题。多个TCP链接或多个应用程序进程可能须要经过同一个
TCP协议端口传输数据。为了区别不一样的应用程序进程和链接,许多计算机操做系统为应用程序与TCP/IP协议交互提供了套接字(Socket)接口。应
用层能够和传输层经过Socket接口,区分来自不一样应用程序进程或网络链接的通讯,实现数据传输的并发服务。
创建Socket链接至少须要一对套接字,其中一个运行于客户端,称为ClientSocket,另外一个运行于服务器端,称为ServerSocket。
套接字之间的链接过程分为三个步骤:服务器监听,客户端请求,链接确认。
服务器监听:服务器端套接字并不定位具体的客户端套接字,而是处于等待链接的状态,实时监控网络状态,等待客户端的链接请求。
客户端请求:指客户端的套接字提出链接请求,要链接的目标是服务器端的套接字。为此,客户端的套接字必须首先描述它要链接的服务器的套接字,指出服务器端套接字的地址和端口号,而后就向服务器端套接字提出链接请求。
连
接确认:当服务器端套接字监听到或者说接收到客户端套接字的链接请求时,就响应客户端套接字的请求,创建一个新的线程,把服务器端套接字的描述发给客户
端,一旦客户端确认了此描述,双方就正式创建链接。而服务器端套接字继续处于监听状态,继续接收其余客户端套接字的链接请求。
建立Socket链接时,能够指定使用的传输层协议,Socket能够支持不一样的传输层协议(TCP或UDP),当使用TCP协议进行链接时,该Socket链接就是一个TCP链接。
由
于一般状况下Socket链接就是TCP链接,所以Socket链接一旦创建,通讯双方便可开始相互发送数据内容,直到双方链接断开。但在实际网络应用
中,客户端到服务器之间的通讯每每须要穿越多个中间节点,例如路由器、网关、防火墙等,大部分防火墙默认会关闭长时间处于非活跃状态的链接而致使
Socket 链接断连,所以须要经过轮询告诉网络,该链接处于活跃状态。
而HTTP链接使用的是“请求—响应”的方式,不只在请求时须要先创建链接,并且须要客户端向服务器发出请求后,服务器端才能回复数据。
很
多状况下,须要服务器端主动向客户端推送数据,保持客户端与服务器数据的实时与同步。此时若双方创建的是Socket链接,服务器就能够直接将数据传送给
客户端;若双方创建的是HTTP链接,则服务器须要等到客户端发送一次请求后才能将数据传回给客户端,所以,客户端定时向服务器端发送链接请求,不只能够
保持在线,同时也是在“询问”服务器是否有新的数据,若是有就将数据传给客户端。
既然socket是“open—write/read—close”模式的一种实现,那么socket就提供了这些操做对应的函数接口。下面以TCP为例,介绍几个基本的socket接口函数。
3.4.一、socket()函数
int socket(int domain, int type, int protocol);
socket函数对应于普通文件的打开操做。普通文件的打开操做返回一个文件描述字,而socket()用于建立一个socket描述符(socket descriptor),它惟一标识一个socket。这个socket描述字跟文件描述字同样,后续的操做都有用到它,把它做为参数,经过它来进行一些读写操做。
正如能够给fopen的传入不一样参数值,以打开不一样的文件。建立socket的时候,也能够指定不一样的参数建立不一样的socket描述符,socket函数的三个参数分别为:
注意:并非上面的type和protocol能够随意组合的,如SOCK_STREAM不能够跟IPPROTO_UDP组合。当protocol为0时,会自动选择type类型对应的默认协议。
当咱们调用socket建立一个socket时,返回的socket描述字它存在于协议族(address family,AF_XXX)空间中,但没有一个具体的地址。若是想要给它赋值一个地址,就必须调用bind()函数,不然就当调用connect()、listen()时系统会自动随机分配一个端口。
3.4.二、bind()函数
正如上面所说bind()函数把一个地址族中的特定地址赋给socket。例如对应AF_INET、AF_INET6就是把一个ipv4或ipv6地址和端口号组合赋给socket。
int bind(int sockfd, const struct sockaddr *addr, socklen_t addrlen);
函数的三个参数分别为:
struct sockaddr_in { sa_family_t sin_family; /* address family: AF_INET */ in_port_t sin_port; /* port in network byte order */ struct in_addr sin_addr; /* internet address */ }; /* Internet address. */ struct in_addr { uint32_t s_addr; /* address in network byte order */ };
struct sockaddr_in6 { sa_family_t sin6_family; /* AF_INET6 */ in_port_t sin6_port; /* port number */ uint32_t sin6_flowinfo; /* IPv6 flow information */ struct in6_addr sin6_addr; /* IPv6 address */ uint32_t sin6_scope_id; /* Scope ID (new in 2.4) */ }; struct in6_addr { unsigned char s6_addr[16]; /* IPv6 address */ };
#define UNIX_PATH_MAX 108 struct sockaddr_un { sa_family_t sun_family; /* AF_UNIX */ char sun_path[UNIX_PATH_MAX]; /* pathname */ };
一般服务器在启动的时候都会绑定一个众所周知的地址(如ip地址+端口号),用于提供服务,客户就能够经过它来接连服务器;而客户端就不用指定,有系统自动分配一个端口号和自身的ip地址组合。这就是为何一般服务器端在listen以前会调用bind(),而客户端就不会调用,而是在connect()时由系统随机生成一个。
网络字节序与主机字节序
主机字节序就是咱们日常说的大端和小端模式:不一样的CPU有不一样的字节序类型,这些字节序是指整数在内存中保存的顺序,这个叫作主机序。引用标准的Big-Endian和Little-Endian的定义以下:
a) Little-Endian就是低位字节排放在内存的低地址端,高位字节排放在内存的高地址端。
b) Big-Endian就是高位字节排放在内存的低地址端,低位字节排放在内存的高地址端。
网络字节序:4个字节的32 bit值如下面的次序传输:首先是0~7bit,其次8~15bit,而后16~23bit,最后是24~31bit。这种传输次序称做大端字节序。因为TCP/IP首部中全部的二进制整数在网络中传输时都要求以这种次序,所以它又称做网络字节序。字节序,顾名思义字节的顺序,就是大于一个字节类型的数据在内存中的存放顺序,一个字节的数据没有顺序的问题了。
因此:在将一个地址绑定到socket的时候,请先将主机字节序转换成为网络字节序,而不要假定主机字节序跟网络字节序同样使用的是Big-Endian。因为这个问题曾引起过血案!公司项目代码中因为存在这个问题,致使了不少莫名其妙的问题,因此请谨记对主机字节序不要作任何假定,务必将其转化为网络字节序再赋给socket。
若是做为一个服务器,在调用socket()、bind()以后就会调用listen()来监听这个socket,若是客户端这时调用connect()发出链接请求,服务器端就会接收到这个请求。
int listen(int sockfd, int backlog);
int connect(int sockfd, const struct sockaddr *addr, socklen_t addrlen);
listen函数的第一个参数即为要监听的socket描述字,第二个参数为相应socket能够排队的最大链接个数。socket()函数建立的socket默认是一个主动类型的,listen函数将socket变为被动类型的,等待客户的链接请求。
connect函数的第一个参数即为客户端的socket描述字,第二参数为服务器的socket地址,第三个参数为socket地址的长度。客户端经过调用connect函数来创建与TCP服务器的链接。
TCP服务器端依次调用socket()、bind()、listen()以后,就会监听指定的socket地址了。TCP客户端依次调用socket()、connect()以后就想TCP服务器发送了一个链接请求。TCP服务器监听到这个请求以后,就会调用accept()函数取接收请求,这样链接就创建好了。以后就能够开始网络I/O操做了,即类同于普通文件的读写I/O操做。
int accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen);
accept函数的第一个参数为服务器的socket描述字,第二个参数为指向struct sockaddr *的指针,用于返回客户端的协议地址,第三个参数为协议地址的长度。若是accpet成功,那么其返回值是由内核自动生成的一个全新的描述字,表明与返回客户的TCP链接。
注意:accept的第一个参数为服务器的socket描述字,是服务器开始调用socket()函数生成的,称为监听socket描述字;而accept函数返回的是已链接的socket描述字。一个服务器一般一般仅仅只建立一个监听socket描述字,它在该服务器的生命周期内一直存在。内核为每一个由服务器进程接受的客户链接建立了一个已链接socket描述字,当服务器完成了对某个客户的服务,相应的已链接socket描述字就被关闭。
万事具有只欠东风,至此服务器与客户已经创建好链接了。能够调用网络I/O进行读写操做了,即实现了网咯中不一样进程之间的通讯!网络I/O操做有下面几组:
我推荐使用recvmsg()/sendmsg()函数,这两个函数是最通用的I/O函数,实际上能够把上面的其它函数都替换成这两个函数。它们的声明以下:
#include <unistd.h> ssize_t read(int fd, void *buf, size_t count); ssize_t write(int fd, const void *buf, size_t count); #include <sys/types.h> #include <sys/socket.h> ssize_t send(int sockfd, const void *buf, size_t len, int flags); ssize_t recv(int sockfd, void *buf, size_t len, int flags); ssize_t sendto(int sockfd, const void *buf, size_t len, int flags, const struct sockaddr *dest_addr, socklen_t addrlen); ssize_t recvfrom(int sockfd, void *buf, size_t len, int flags, struct sockaddr *src_addr, socklen_t *addrlen); ssize_t sendmsg(int sockfd, const struct msghdr *msg, int flags); ssize_t recvmsg(int sockfd, struct msghdr *msg, int flags);
read函数是负责从fd中读取内容.当读成功时,read返回实际所读的字节数,若是返回的值是0表示已经读到文件的结束了,小于0表示出现了错误。若是错误为EINTR说明读是由中断引发的,若是是ECONNREST表示网络链接出了问题。
write函数将buf中的nbytes字节内容写入文件描述符fd.成功时返回写的字节数。失败时返回-1,并设置errno变量。 在网络程序中,当咱们向套接字文件描述符写时有俩种可能。1)write的返回值大于0,表示写了部分或者是所有的数据。2)返回的值小于0,此时出现了错误。咱们要根据错误类型来处理。若是错误为EINTR表示在写的时候出现了中断错误。若是为EPIPE表示网络链接出现了问题(对方已经关闭了链接)。
其它的我就不一一介绍这几对I/O函数了,具体参见man文档或者baidu、Google,下面的例子中将使用到send/recv。
在服务器与客户端创建链接以后,会进行一些读写操做,完成了读写操做就要关闭相应的socket描述字,比如操做完打开的文件要调用fclose关闭打开的文件。
#include <unistd.h>
int close(int fd);
close一个TCP socket的缺省行为时把该socket标记为以关闭,而后当即返回到调用进程。该描述字不能再由调用进程使用,也就是说不能再做为read或write的第一个参数。
注意:close操做只是使相应socket描述字的引用计数-1,只有当引用计数为0的时候,才会触发TCP客户端向服务器发送终止链接请求。