JavaShuo
栏目
标签
【密码学原理】椭圆曲线密码学
时间 2020-12-23
标签
密码学
信息安全
ecc
栏目
系统安全
繁體版
原文
原文链接
要建立基于椭圆曲线的密码体制,需要有类似因子分解两个素数之积或者求离散对数这样的困难问题。 如果对于方程,其中,对给定的和计算是容易的,但是对给定的和计算是困难的,我们认为这就是椭圆曲线的离散对数问题。 用椭圆曲线密码实现Diffie-Hellman密钥交换 椭圆曲线的方程为或者,选择大整数和参数,其中为素数,或者形为的整数。椭圆群,在中挑选基点,的阶为一个非常大的数,点的阶使得成立的最小正整数。
>>阅读原文<<
相关文章
1.
椭圆曲线密码原理
2.
椭圆曲线公钥密码学习
3.
椭圆曲线密码学ECC
4.
椭圆曲线密码算术(ECC)原理
5.
浅谈椭圆曲线加密ECC
6.
ECC椭圆曲线加密扫盲贴
7.
python实现的椭圆曲线加密
8.
椭圆曲线加密教程【下篇】
9.
(ECC)椭圆曲线加密算法原理和C++实现源码
更多相关文章...
•
PHP imagearc - 画椭圆弧
-
PHP参考手册
•
XML 编码
-
XML 教程
•
适用于PHP初学者的学习线路和建议
•
Tomcat学习笔记(史上最全tomcat学习笔记)
相关标签/搜索
Java密码学
go密码学
密码学
密码
椭圆曲线
现代密码学
密码学笔记
密码学系列
格理论与密码学
密密
系统安全
MyBatis教程
SQLite教程
PHP教程
学习路线
乱码
初学者
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
python的安装和Hello,World编写
2.
重磅解读:K8s Cluster Autoscaler模块及对应华为云插件Deep Dive
3.
鸿蒙学习笔记2(永不断更)
4.
static关键字 和构造代码块
5.
JVM笔记
6.
无法启动 C/C++ 语言服务器。IntelliSense 功能将被禁用。错误: Missing binary at c:\Users\MSI-NB\.vscode\extensions\ms-vsc
7.
【Hive】Hive返回码状态含义
8.
Java树形结构递归(以时间换空间)和非递归(以空间换时间)
9.
数据预处理---缺失值
10.
都要2021年了,现代C++有什么值得我们学习的?
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
椭圆曲线密码原理
2.
椭圆曲线公钥密码学习
3.
椭圆曲线密码学ECC
4.
椭圆曲线密码算术(ECC)原理
5.
浅谈椭圆曲线加密ECC
6.
ECC椭圆曲线加密扫盲贴
7.
python实现的椭圆曲线加密
8.
椭圆曲线加密教程【下篇】
9.
(ECC)椭圆曲线加密算法原理和C++实现源码
>>更多相关文章<<