MongoDB 2.1 多了新Feature - Aggregation Framework。最近工做须要就稍微看了下,Mark之。 java
Overview sql
Aggregation 提供的功能map-reduce也能作(诸如统计平均值,求和等)。官方那个大胖子说这东西比map-reduce简单, map-reduce 我没用过, 不过从使用Aggregation的状况来看, 进行统计等操做仍是蛮方便的。 mongodb
整体而言,Aggregation就是相似 Unix-like中的 管道 的概念,能够将不少数据流串起来,不一样的数据处理阶段能够再上一个阶段的基础上再次加工。 数据库
Pipeline-Operator 数组
比较经常使用的有: app
•$sort - 排序 code
Usage - Java server
我在db中造了些数据(数据时随机生成的, 能用便可),没有建索引,文档结构以下:
Document结构: { "_id" : ObjectId("509944545"), "province" : "海南", "age" : 21, "subjects" : [ { "name":"语文", "score" : 53 }, { "name":"数学", "score" : 27 }, { "name":"英语", "score" : 35 } ], "name" : "刘雨" }接下来要实现两个功能:
统计每一个省各科平均成绩 排序
接下来一一道来 索引
统计上海学平生均年龄
从这个需求来说,要实现功能要有几个步骤: 1. 找出上海的学生. 2. 统计平均年龄 (固然也能够先算出全部省份的平均值再找出上海的)。如此思路也就清晰了
首先上 $match, 取出上海学生
{$match:{'province':'上海'}}接下来 用 $group 统计平均年龄
{$group:{_id:’$province’,$avg:’$age’}}$avg 是 $group的子命令,用于求平均值,相似的还有 $sum, $max ....
上面两个命令等价于
select province, avg(age) from student where province = '上海' group by province
下面是Java代码
Mongo m = new Mongo("localhost", 27017); DB db = m.getDB("test"); DBCollection coll = db.getCollection("student"); /*建立 $match, 做用至关于query*/ DBObject match = new BasicDBObject("$match", new BasicDBObject("province", "上海")); /* Group操做*/ DBObject groupFields = new BasicDBObject("_id", "$province"); groupFields.put("AvgAge", new BasicDBObject("$avg", "$age")); DBObject group = new BasicDBObject("$group", groupFields); /* 查看Group结果 */ AggregationOutput output = coll.aggregate(match, group); // 执行 aggregation命令 System.out.println(output.getCommandResult());输出结果:
{ "serverUsed" : "localhost/127.0.0.1:27017" , "result" : [ { "_id" : "上海" , "AvgAge" : 32.09375} ] , "ok" : 1.0 }如此工程就结束了,再看另一个需求
统计每一个省各科平均成绩
首先更具数据库文档结构,subjects是数组形式,须要先‘劈’开,而后再进行统计
主要处理步骤以下:
1. 先用$unwind 拆数组 2. 按照 province, subject 分租并求各科目平均分
$unwind 拆数组
{$unwind:’$subjects’}按照 province, subject 分组,并求平均分
{$group:{ _id:{ subjname:”$subjects.name”, // 指定group字段之一 subjects.name, 并重命名为 subjname province:’$province’ // 指定group字段之一 province, 并重命名为 province(没变) }, AvgScore:{ $avg:”$subjects.score” // 对 subjects.score 求平均 } }java代码以下:
Mongo m = new Mongo("localhost", 27017); DB db = m.getDB("test"); DBCollection coll = db.getCollection("student"); /* 建立 $unwind 操做, 用于切分数组*/ DBObject unwind = new BasicDBObject("$unwind", "$subjects"); /* Group操做*/ DBObject groupFields = new BasicDBObject("_id", new BasicDBObject("subjname", "$subjects.name").append("province", "$province")); groupFields.put("AvgScore", new BasicDBObject("$avg", "$subjects.scores")); DBObject group = new BasicDBObject("$group", groupFields); /* 查看Group结果 */ AggregationOutput output = coll.aggregate(unwind, group); // 执行 aggregation命令 System.out.println(output.getCommandResult());输出结果
{ "serverUsed" : "localhost/127.0.0.1:27017" , "result" : [ { "_id" : { "subjname" : "英语" , "province" : "海南"} , "AvgScore" : 58.1} , { "_id" : { "subjname" : "数学" , "province" : "海南"} , "AvgScore" : 60.485} , { "_id" : { "subjname" : "语文" , "province" : "江西"} , "AvgScore" : 55.538} , { "_id" : { "subjname" : "英语" , "province" : "上海"} , "AvgScore" : 57.65625} , { "_id" : { "subjname" : "数学" , "province" : "广东"} , "AvgScore" : 56.690} , { "_id" : { "subjname" : "数学" , "province" : "上海"} , "AvgScore" : 55.671875} , { "_id" : { "subjname" : "语文" , "province" : "上海"} , "AvgScore" : 56.734375} , { "_id" : { "subjname" : "英语" , "province" : "云南"} , "AvgScore" : 55.7301 } , . . . . "ok" : 1.0 }统计就此结束.... 稍等,彷佛有点太粗糙了,虽然统计出来的,可是根本无法看,同一个省份的科目都不在一块儿。囧
接下来进行下增强,
支线任务: 将同一省份的科目成绩统计到一块儿( 即,指望 'province':'xxxxx', avgscores:[ {'xxx':xxx}, ....] 这样的形式)
要作的有一件事,在前面的统计结果的基础上,先用 $project 将平均分和成绩揉到一块儿,即形以下面的样子
{ "subjinfo" : { "subjname" : "英语" ,"AvgScores" : 58.1 } ,"province" : "海南" }
再按省份group,将各科目的平均分push到一块,命令以下:
$project 重构group结果
{$project:{province:"$_id.province", subjinfo:{"subjname":"$_id.subjname", "avgscore":"$AvgScore"}}$使用 group 再次分组
{$group:{_id:"$province", avginfo:{$push:"$subjinfo"}}}java 代码以下:
Mongo m = new Mongo("localhost", 27017); DB db = m.getDB("test"); DBCollection coll = db.getCollection("student"); /* 建立 $unwind 操做, 用于切分数组*/ DBObject unwind = new BasicDBObject("$unwind", "$subjects"); /* Group操做*/ DBObject groupFields = new BasicDBObject("_id", new BasicDBObject("subjname", "$subjects.name").append("province", "$province")); groupFields.put("AvgScore", new BasicDBObject("$avg", "$subjects.scores")); DBObject group = new BasicDBObject("$group", groupFields); /* Reshape Group Result*/ DBObject projectFields = new BasicDBObject(); projectFields.put("province", "$_id.province"); projectFields.put("subjinfo", new BasicDBObject("subjname","$_id.subjname").append("avgscore", "$AvgScore")); DBObject project = new BasicDBObject("$project", projectFields); /* 将结果push到一块儿*/ DBObject groupAgainFields = new BasicDBObject("_id", "$province"); groupAgainFields.put("avginfo", new BasicDBObject("$push", "$subjinfo")); DBObject reshapeGroup = new BasicDBObject("$group", groupAgainFields); /* 查看Group结果 */ AggregationOutput output = coll.aggregate(unwind, group, project, reshapeGroup); System.out.println(output.getCommandResult());
结果以下:
{ "serverUsed" : "localhost/127.0.0.1:27017" , "result" : [ { "_id" : "辽宁" , "avginfo" : [ { "subjname" : "数学" , "avgscore" : 56.46666666666667} , { "subjname" : "英语" , "avgscore" : 52.093333333333334} , { "subjname" : "语文" , "avgscore" : 50.53333333333333}]} , { "_id" : "四川" , "avginfo" : [ { "subjname" : "数学" , "avgscore" : 52.72727272727273} , { "subjname" : "英语" , "avgscore" : 55.90909090909091} , { "subjname" : "语文" , "avgscore" : 57.59090909090909}]} , { "_id" : "重庆" , "avginfo" : [ { "subjname" : "语文" , "avgscore" : 56.077922077922075} , { "subjname" : "英语" , "avgscore" : 54.84415584415584} , { "subjname" : "数学" , "avgscore" : 55.33766233766234}]} , { "_id" : "安徽" , "avginfo" : [ { "subjname" : "英语" , "avgscore" : 55.458333333333336} , { "subjname" : "数学" , "avgscore" : 54.47222222222222} , { "subjname" : "语文" , "avgscore" : 52.80555555555556}]} . . . ] , "ok" : 1.0}至此,功能也就完成了,呼。
结语
Aggravation 这就介绍完了, 固然还有不少细节没说清楚,更多的资料能够参考MongoDB官方文档(http://docs.mongodb.org/manual/applications/aggregation/)。 期待后期再深刻挖掘其功能。