嘟嘟嘟
这题刚开始把\(17!\)想成了\(2 ^ {17}\),觉得全排暴力枚举就行,而后写一半发现好像只能过\(n \leqslant 10\)的点。
讨论正解以前,咱们先想状压dp,毕竟这个数据范围就像状压。\(dp[i][j][S]\)表示点\(i\)所在子树中,\(i\)对应\(j\),子树的对应状况为\(S\)时的方案数。转移的时候枚举子树\(v\)和对应编号\(k\),而后由于编号不能重,咱们枚举\(S\)的补集的子集,而后暴力合并两个集合。
用子集dp的话,复杂度能达到\(O(n ^ 3 3 ^ {n})\),仍然会超时。
而后题解就说,若是不考虑编号不能重的限制,咱们就能够省去第三维了。
如今加上了限制,就能够用容斥。
考虑若是有一些点的编号被用了好多遍,那必定说明有一些点没被用到。那咱们干脆直接删掉这些点而后再dp。因而\(O(2 ^ n)\)枚举哪些点被删掉,而后根据个数奇偶性容斥一下便可。
至关于咱们要求的是图中刚好有\(n\)个点都被映射的方案数=至少有\(n\)个点被映射的方案数-至少有\(n - 1\)个点被映射的方案数+至少有\(n - 2\)个点被映射-至少有\(n - 3\)个点……
总的来讲,咱们容斥的是图上被删去的点,即哪些点没有被映射,而不是树上哪些点不参与dp。(这里我纠结了很久)ios
#include<cstdio> #include<iostream> #include<cmath> #include<algorithm> #include<cstring> #include<cstdlib> #include<cctype> #include<vector> #include<stack> #include<queue> #include<assert.h> using namespace std; #define enter puts("") #define space putchar(' ') #define Mem(a, x) memset(a, x, sizeof(a)) #define In inline typedef long long ll; typedef double db; const int INF = 0x3f3f3f3f; const db eps = 1e-8; const int maxn = 20; In ll read() { ll ans = 0; char ch = getchar(), last = ' '; while(!isdigit(ch)) last = ch, ch = getchar(); while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar(); if(last == '-') ans = -ans; return ans; } In void write(ll x) { if(x < 0) x = -x, putchar('-'); if(x >= 10) write(x / 10); putchar(x % 10 + '0'); } In void MYFILE() { #ifndef mrclr freopen("star3.in", "r", stdin); freopen("ha.out", "w", stdout); #endif } int n, m, G[maxn][maxn]; struct Edge { int nxt, to; }e[maxn << 1]; int head[maxn], ecnt = -1; In void addEdge(int x, int y) { e[++ecnt] = (Edge){head[x], y}; head[x] = ecnt; } int pos[maxn]; In bool dfs0(int now, int _f) { for(int i = head[now], v; ~i; i = e[i].nxt) { if((v = e[i].to) == _f) continue; if(!G[pos[now]][pos[v]]) return 0; if(!dfs0(v, now)) return 0; } return 1; } In void work0() { for(int i = 1; i <= n; ++i) pos[i] = i; int ans = 0; do { ans += dfs0(1, 0); }while(next_permutation(pos + 1, pos + n + 1)); write(ans), enter; } bool vis[maxn]; ll dp[maxn][maxn], ans; In void dfs(int now, int _f) { for(int i = 1; i <= n; ++i) dp[now][i] = 1; for(int i = head[now], v; ~i; i = e[i].nxt) { if((v = e[i].to) == _f) continue; dfs(v, now); for(int j = 1; j <= n; ++j) { ll sum = 0; for(int k = 1; k <= n; ++k) sum += dp[v][k] * (G[j][k] & vis[j] & vis[k]); dp[now][j] *= sum; } } } int main() { //MYFILE(); Mem(head, -1); n = read(), m = read(); for(int i = 1; i <= m; ++i) { int x = read(), y = read(); G[x][y] = G[y][x] = 1; } for(int i = 1; i < n; ++i) { int x = read(), y = read(); addEdge(x, y), addEdge(y, x); } if(n <= 10) {work0(); return 0;} //开局写了个n!暴力…… for(int S = 1; S < (1 << n); ++S) { int tot = n; for(int i = 1; i <= n; ++i) if((S >> (i - 1)) & 1) vis[i] = 1, --tot; else vis[i] = 0; dfs(1, 0); ll tp = 0; for(int i = 1; i <= n; ++i) tp += dp[1][i]; if(tot & 1) ans -= tp; else ans += tp; } write(ans), enter; return 0; }