先看一下线程池类的类图关系:java
Executor做者描述的是Executor提供了一种解耦方式将任务的提交和任务以何种技术执行分离;
Executor接口只有一个方法:安全
void execute(Runnable command);
execute方法接收一个Runnable对象,方法的描述是在将来的某个时间执行command。不论是在一个新的线程中执行,仍是在线程池中执行,甚至在调用者线程中当即执行。异步
ExecutorService继承了Executor接口,ExecutorService能够被关闭,关闭之后再也不接收新的任务。ExecutorService提供了两个不一样的方法关闭ExecutorService。shutdown方法会等待以前还未执行的任务执行完毕再关闭,而shutdownNow则不会再启动新的任务,还会中断正在执行的任务。一旦关闭后,ExecutorService就不会有正在执行的任务,也不会有等待被执行的任务,更不会有新的任务被提交。ExecutorService关闭后应该处理好一些资源的回收。ide
线程池技术旨在解决两个不一样的问题:函数
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0)); //高3位和低29位分别表示状态和线程数 private static final int COUNT_BITS = Integer.SIZE - 3; //1左移29位减一获得低29位都是1,即线程的最大数量,大概5亿多 private static final int CAPACITY = (1 << COUNT_BITS) - 1; // runState is stored in the high-order bits private static final int RUNNING = -1 << COUNT_BITS;//111 private static final int SHUTDOWN = 0 << COUNT_BITS;//000 private static final int STOP = 1 << COUNT_BITS;//001 private static final int TIDYING = 2 << COUNT_BITS;//010 private static final int TERMINATED = 3 << COUNT_BITS;//011 // Packing and unpacking ctl //得到状态 private static int runStateOf(int c) { return c & ~CAPACITY; } //得到线程数量 private static int workerCountOf(int c) { return c & CAPACITY; } //经过状态和线程数量组装ctl private static int ctlOf(int rs, int wc) { return rs | wc; } /* * Bit field accessors that don't require unpacking ctl. * These depend on the bit layout and on workerCount being never negative. */ //c状态是否小于s状态 private static boolean runStateLessThan(int c, int s) { return c < s; } //c状态是否大于等于s状态 private static boolean runStateAtLeast(int c, int s) { return c >= s; } //线程池是不是运行状态 private static boolean isRunning(int c) { return c < SHUTDOWN; }
整个类最重要的一个状态标志ctl是一个AtomicInteger,它包含了两个字段的含义。workerCount线程数量,runState线程池的状态。
这一个字段是如何包含两个字段的含义的呢,Doug Lea大牛使用了一个int的32位bits的高三位保存了状态值,低29位保存了线程数量。oop
其中五个状态:
RUNNING:接收新的任务,处理队列中的任务;
SHUTDOWN:不接收新的任务,但处理队列中的任务;
STOP:不接收新的任务,不处理队列中的任务,中断正在执行的任务;
TIDYING:全部任务都终止,线程数为0, 线程过分到TIDYING时会调用terminated钩子方法;
TERMINATED:terminated执行完毕;性能
状态之间的转换:
RUNNING -> SHUTDOWN:调用shutdown方法;
(RUNNING or SHUTDOWN) -> STOP:调用shutdownNow方法;
SHUTDOWN -> TIDYING:当线程池和任务队列都为空;
STOP -> TIDYING:当线程池为空;
TIDYING -> TERMINATED:当terminated方法执行完毕;ui
Worker类主要包含了线程运行任务时的终端控制状态,同时还有一些少许的信息记录。Worker适时的继承了AQS,让线程在任务执行之间获取锁和释放锁变得简单。这确保了中断是唤醒一个等待任务的线程,而不是中断一个正在运行的任务线程。this
private final class Worker extends AbstractQueuedSynchronizer implements Runnable { /** * This class will never be serialized, but we provide a * serialVersionUID to suppress a javac warning. */ private static final long serialVersionUID = 6138294804551838833L; /** Thread this worker is running in. Null if factory fails. */ final Thread thread; /** Initial task to run. Possibly null. */ Runnable firstTask; /** Per-thread task counter */ volatile long completedTasks; /** * Creates with given first task and thread from ThreadFactory. * @param firstTask the first task (null if none) */ Worker(Runnable firstTask) { setState(-1); // inhibit interrupts until runWorker this.firstTask = firstTask; this.thread = getThreadFactory().newThread(this); } /** Delegates main run loop to outer runWorker */ public void run() { runWorker(this); } // Lock methods // // The value 0 represents the unlocked state. // The value 1 represents the locked state. protected boolean isHeldExclusively() { return getState() != 0; } protected boolean tryAcquire(int unused) { if (compareAndSetState(0, 1)) { setExclusiveOwnerThread(Thread.currentThread()); return true; } return false; } protected boolean tryRelease(int unused) { setExclusiveOwnerThread(null); setState(0); return true; } public void lock() { acquire(1); } public boolean tryLock() { return tryAcquire(1); } public void unlock() { release(1); } public boolean isLocked() { return isHeldExclusively(); } void interruptIfStarted() { Thread t; if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) { try { t.interrupt(); } catch (SecurityException ignore) { } } } }
Worker继承了AQS,实现了Runnable接口;在构造函数中,初始化了它的第一次仍无,使用threadFactory建立一个新的线程;
Worker继承AQS,目的是想使用独占锁来表示线程是否正在执行任务,Worker的线程获取了独占锁就说明它在执行任务,不能被中断。从tryAcquire方法能够看出,它实现的是不可重入锁,由于是否得到锁在这里表示一个状态,若是能够重入的话,独占锁就失去了只表示一个状态的含义。在构造函数初始化时,Worker将state设置为-1,由于在tryAcquire中CAS操做compareAndSetState(0, 1),表示state在-1时不能被中断。在runWorker中将state设置为0.atom
public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory, RejectedExecutionHandler handler) { if (corePoolSize < 0 || maximumPoolSize <= 0 || maximumPoolSize < corePoolSize || keepAliveTime < 0) throw new IllegalArgumentException(); if (workQueue == null || threadFactory == null || handler == null) throw new NullPointerException(); this.corePoolSize = corePoolSize; this.maximumPoolSize = maximumPoolSize; this.workQueue = workQueue; this.keepAliveTime = unit.toNanos(keepAliveTime); this.threadFactory = threadFactory; this.handler = handler; }
说明一下各参数的含义:
corePoolSize:核心线程数量,即便线程是空闲的也保持在线程池中,除非allowCoreThreadTimeOut参数被设置;
maximumPoolSize:最大线程数量;
keepAliveTime:当线程数量超过核心线程数量时,超出的空闲线程等待新任务的最大时长;
unit:时间单位;
workQueue:存放将要被执行的任务的队列;
threadFactory:建立线程的线程工厂;
handler:当任务队列满且没有空闲的线程时处理任务的handler,线程池提供了四种策略:
这些参数对整个线程池运行很是重要;
public void execute(Runnable command) { if (command == null) throw new NullPointerException(); /* * Proceed in 3 steps: * * 1. If fewer than corePoolSize threads are running, try to * start a new thread with the given command as its first * task. The call to addWorker atomically checks runState and * workerCount, and so prevents false alarms that would add * threads when it shouldn't, by returning false. * * 2. If a task can be successfully queued, then we still need * to double-check whether we should have added a thread * (because existing ones died since last checking) or that * the pool shut down since entry into this method. So we * recheck state and if necessary roll back the enqueuing if * stopped, or start a new thread if there are none. * * 3. If we cannot queue task, then we try to add a new * thread. If it fails, we know we are shut down or saturated * and so reject the task. */ //获取ctl int c = ctl.get(); //若是线程数小于核心线程数 if (workerCountOf(c) < corePoolSize) { //添加线程并执行任务 if (addWorker(command, true)) return; c = ctl.get(); } //线程数大于核心线程数 //若是线程池running状态且添加任务到队列成功 if (isRunning(c) && workQueue.offer(command)) { int recheck = ctl.get(); //若是线程池不是运行状态,队列移除任务,使用拒绝策略处理任务 if (! isRunning(recheck) && remove(command)) reject(command); //若是这时线程数为0,添加任务 else if (workerCountOf(recheck) == 0) addWorker(null, false); } //队列满,添加线程失败,使用拒绝策略处理任务 else if (!addWorker(command, false)) reject(command); }
在线程池添
数量若是小于核心线程数,则添加新的线程并执行当前任务,不然判断若是队列是否未满,则添加当前任务到队列,不然判断线程数量若是小于最大线程数,则添加新的线程并执行,不然使用拒绝策略处理当前任务。
addWorker方法主要是添加线程并执行任务:
private boolean addWorker(Runnable firstTask, boolean core) { retry: for (;;) { int c = ctl.get(); //获取线程池运行状态 int rs = runStateOf(c); // Check if queue empty only if necessary. //若是运行状态大于等于SHUTDOWN,再也不接受新的任务,返回false //若是运行状态等于SHUTDOWN且firstTask不为空,继续执行下去,若是firstTask为空,queue为空,返回false,不然继续执行;只要SHUTDOWN状态下还有任务在,就须要往下执行,可能须要新建worker执行 if (rs >= SHUTDOWN && ! (rs == SHUTDOWN && firstTask == null && ! workQueue.isEmpty())) return false; for (;;) { //得到线程数量 int wc = workerCountOf(c); //若是线程数量大于容量或者当core为true时wc大于等于核心线程数,当core为falsewc大于等于最大线程数量时,返回false if (wc >= CAPACITY || wc >= (core ? corePoolSize : maximumPoolSize)) return false; //CAS线程数加一,成功则中断循环 if (compareAndIncrementWorkerCount(c)) break retry; //若是CAS失败,从新获取ctl,线程池运行状态没变的话继续loop c = ctl.get(); // Re-read ctl if (runStateOf(c) != rs) continue retry; // else CAS failed due to workerCount change; retry inner loop } } boolean workerStarted = false; boolean workerAdded = false; Worker w = null; try { //新建一个worker w = new Worker(firstTask); //能获得worker的thread final Thread t = w.thread; if (t != null) { final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { // Recheck while holding lock. // Back out on ThreadFactory failure or if // shut down before lock acquired. int rs = runStateOf(ctl.get()); //若是rs是RUNNING或者SHUTDOWN且firstTask为null //由于SHUTDOWN时还须要执行queue中的任务 if (rs < SHUTDOWN || (rs == SHUTDOWN && firstTask == null)) { if (t.isAlive()) // precheck that t is startable throw new IllegalThreadStateException(); //往线程池中添加worker workers.add(w); int s = workers.size(); //记录线程池出现的最大线程数量 if (s > largestPoolSize) largestPoolSize = s; workerAdded = true; } } finally { mainLock.unlock(); } if (workerAdded) { //启动worker t.start(); workerStarted = true; } } } finally { if (! workerStarted) addWorkerFailed(w); } return workerStarted; }
worker的run方法调用的是runWorker;
final void runWorker(Worker w) { Thread wt = Thread.currentThread(); //保存worker的第一个任务 Runnable task = w.firstTask; //清空worker的第一个任务 w.firstTask = null; //这里将worker的state设置为0,容许中断 w.unlock(); // allow interrupts boolean completedAbruptly = true; try { //若是task为空,则从队列中获取任务 while (task != null || (task = getTask()) != null) { //开始执行任务,不容许中断 w.lock(); // If pool is stopping, ensure thread is interrupted; // if not, ensure thread is not interrupted. This // requires a recheck in second case to deal with // shutdownNow race while clearing interrupt //若是当前状态大于等于STOP要保持当前线程中断 //若是当前线程小于STOP即RUNNING或者SHUTDOWN,调用Thread.interrupted()清空中断标志,若是这时调用了shutdownNow状态为STOP,仍是要保持中断状态 if ((runStateAtLeast(ctl.get(), STOP) || (Thread.interrupted() && runStateAtLeast(ctl.get(), STOP))) && !wt.isInterrupted()) wt.interrupt(); try { //执行任务前作的事 beforeExecute(wt, task); Throwable thrown = null; try { //执行任务 task.run(); } catch (RuntimeException x) { thrown = x; throw x; } catch (Error x) { thrown = x; throw x; } catch (Throwable x) { thrown = x; throw new Error(x); } finally { //执行任务以后作的事 afterExecute(task, thrown); } } finally { task = null; //worker的完成任务数量加一,此时是线程安全的 w.completedTasks++; //释放锁 w.unlock(); } } completedAbruptly = false; } finally { //线程退出 processWorkerExit(w, completedAbruptly); } }
每一个task在调用runWorker后会一直循环执行任务,直到queue中没有任务了,循环结束,worker生命周期结束。
上面runWorker时调用了getTask去获取队列中的任务,下面咱们看一下这个方法:
private Runnable getTask() { boolean timedOut = false; // Did the last poll() time out? for (;;) { int c = ctl.get(); int rs = runStateOf(c); // Check if queue empty only if necessary. //若是rs大于等于SHUTDOWN,当RS大于等于STOP说明线程池已经不处理队列中的任务了,当rs为SHUTDOWN时,若是队列是空的,返回null if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) { //线程数减一 decrementWorkerCount(); return null; } int wc = workerCountOf(c); // Are workers subject to culling? //是否超时控制,allowCoreThreadTimeOut默认false,表明不容许核心线程超时,对于超出核心线程的线程须要控制超时 boolean timed = allowCoreThreadTimeOut || wc > corePoolSize; //当线程数大于最大线程数,或者须要超时控制且上次获取任务超时 //且线程数大于1或者队列为空,尝试将线程数减一并返回null if ((wc > maximumPoolSize || (timed && timedOut)) && (wc > 1 || workQueue.isEmpty())) { if (compareAndDecrementWorkerCount(c)) return null; //失败重试 continue; } try { //当须要超时控制时,在keepAliveTime时间内没有获取到任务的话返回null,不然调用take获取任务,此时线程时阻塞的 Runnable r = timed ? workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) : workQueue.take(); if (r != null) return r; timedOut = true; } catch (InterruptedException retry) { timedOut = false; } } }
getTask方法在线程数量大于核心线程数时会判断在获取task时进行超时判断(poll),超时返回null这时getTask返回null,那当前worker的loop结束即run方法结束,线程生命周期结束。而核心线程则会调用take方法,当没有任务时会阻塞。
runTask方法最后会调用processWorkerExit方法进行一些cleanup工做。
private void processWorkerExit(Worker w, boolean completedAbruptly) { //completedAbruptly为true时表明发生了异常,线程数减一 if (completedAbruptly) // If abrupt, then workerCount wasn't adjusted decrementWorkerCount(); final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { //统计完成任务数 completedTaskCount += w.completedTasks; //线程池移除当前worker workers.remove(w); } finally { mainLock.unlock(); } // 根据线程池状态进行判断是否结束线程池 tryTerminate(); int c = ctl.get(); //当线程池状态为RUNNING或者SHUTDOWN时 //若是发生异常,从新加入一个worker replacement if (runStateLessThan(c, STOP)) { if (!completedAbruptly) { //当allowCoreThreadTimeOut为true,最少要一个worker int min = allowCoreThreadTimeOut ? 0 : corePoolSize; if (min == 0 && ! workQueue.isEmpty()) min = 1; //当线程数大于等于最少须要的线程数,则不须要add新的worker if (workerCountOf(c) >= min) return; // replacement not needed } addWorker(null, false); } }
上面咱们跳过了tryTerminate方法,该方法判断是否要结束线程池,这里看一下
final void tryTerminate() { for (;;) { int c = ctl.get(); //当线程池状态时RUNNING或者已经TIDYING或者已经TERMINATED或者SHUTDOWN且还有任务没有被执行,直接返回 if (isRunning(c) || runStateAtLeast(c, TIDYING) || (runStateOf(c) == SHUTDOWN && ! workQueue.isEmpty())) return; // 若是线程数不为0,则中断一个空闲的工做线程 if (workerCountOf(c) != 0) { // Eligible to terminate //workQueue.take()时若是queue一直为空的话,线程会一直阻塞 interruptIdleWorkers(ONLY_ONE); return; } final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { //若是状态设置成功为TIDYING,调用勾子方法terminated,该方法留给了子类实现 if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) { try { terminated(); } finally { //设置状态为TERMINATED ctl.set(ctlOf(TERMINATED, 0)); termination.signalAll(); } return; } } finally { mainLock.unlock(); } // else retry on failed CAS } }
上面说为了当队列一直为空的时候,核心线程会一直阻塞,因此调用了interruptIdleWorkers,咱们看一下执行了什么:
private void interruptIdleWorkers(boolean onlyOne) { final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { for (Worker w : workers) { Thread t = w.thread; if (!t.isInterrupted() && w.tryLock()) { try { t.interrupt(); } catch (SecurityException ignore) { } finally { w.unlock(); } } if (onlyOne) break; } } finally { mainLock.unlock(); } }
遍历线程池中全部的线程,若线程没有被中断tryLock成功,就中断该线程,LockSupport.park()能响应中断信号,阻塞的线程被中断唤醒。