已经中序,后序,求先序。
java
先序的顺序为:先根节点,后左子树,后右子树。api
package whut.tree; //利用java api来进行遍历 ////已知二叉树后序和中序,求先序 public class MiddleAfterTree { //全局变量存放后序序列 //先写根,后写左子树,最后写右子树 public static String res = ""; //两个字符串是否包含了相同的字符 public static boolean StringEquals(String a1, String a2) { boolean state = true; if (a1.length() != a2.length()) { state = false; } if (a1.length() == a2.length()) { for (int i = 0; i < a1.length(); i++) { if (a2.indexOf(a1.charAt(i)) == -1) state = false; } } return state; } //进行遍历输出 //参数依此为中序序列,后序序列 public static void cal_tree(String smid, String slast) { boolean state = StringEquals(smid, slast); if (state == false) return; if (smid.length() == 0) return; //每次添加都是添加中序的字符,当中序字符串长度为1的时候,就返回 if (smid.length() == 1) { res += smid; return; } //后序序列中最后一个就是根 char root = slast.charAt(slast.length()-1); //获取字符在中序序列总的位置 //mid表明的是索引 int mid = smid.indexOf(root); //中序序列的左子树 String c=smid.substring(0, mid); //中序序列的右子树 String d = smid.substring(mid+1); //写入根 res += String.valueOf(root); //中序左子树,后序左子树 cal_tree(c,slast.substring(0, c.length())); //中序右子树,后序右子树,注意这里后序的右子树要最大为slast.length()-1 cal_tree(d,slast.substring(c.length(),slast.length()-1)); return; } public static void main(String[] agrs) { //cal_tree("ADEFGHMZ","AEFDHZMG");=GDAFEMHZ //cal_tree("CDBEAGF","DCEBGFA");=ABCDEFG String s1 = "ADEFGHMZ"; String s2 = "AEFDHZMG"; cal_tree(s1, s2); if (res.length() != s1.length()) { System.out.println("wrong tree list!"); } else { System.out.println(res); } } }