内存管理在APP开发过程当中占据着一个很重要的地位,在iOS中,系统为咱们提供了ARC的开发环境,帮助咱们作了不少内存管理的内容。本章咱们先来看一下,平时开发中使用最多的weak在底层是如何进行实现的数组
咱们经过例子🌰来看一下__strong
、__weak
、__unsafe_unretained
的区别在哪里.安全
首先是看以下例子,能够知道在临时做用域结束以后,生成的对象就会进行销毁,咱们在做用域外部用修饰符来持有对象,再来看一下对象的销毁状况多线程
NSLog(@"临时做用域开始");
{
LGPerson *person = [[LGPerson alloc] init];
NSLog(@"person对象:%@", person);
}
NSLog(@"临时做用域结束");
***************************打印结果******************************
2020-01-19 10:57:13.910542+0800 objc-debug[74175:19740208] 临时做用域开始
2020-01-19 10:57:13.911181+0800 objc-debug[74175:19740208] person对象:<LGPerson: 0x10221c900>
2020-01-19 10:57:13.911277+0800 objc-debug[74175:19740208] LGPerson -[LGPerson dealloc]
2020-01-19 10:57:13.911367+0800 objc-debug[74175:19740208] 临时做用域结束
复制代码
先来看一下用__strong
修饰的结果。能够发现修饰的对象在做用域结束以后并无销毁,说明该对象的引用计数增长了app
__strong LGPerson *strongPerson;
NSLog(@"临时做用域开始");
{
LGPerson *person = [[LGPerson alloc] init];
NSLog(@"person对象:%@", person);
strongPerson = person;
}
NSLog(@"临时做用域结束");
NSLog(@"strongPerson:%@", strongPerson);
***************************打印结果******************************
2020-01-19 11:54:44.079292+0800 objc-debug[74452:19777011] 临时做用域开始
2020-01-19 11:54:44.080060+0800 objc-debug[74452:19777011] person对象:<LGPerson: 0x101945ae0>
2020-01-19 11:54:44.080172+0800 objc-debug[74452:19777011] 临时做用域结束
2020-01-19 11:54:44.080292+0800 objc-debug[74452:19777011] strongPerson:<LGPerson: 0x101945ae0>
复制代码
再来看一下__weak
修饰的结果。经过下面的运行咱们能够发现,用__weak
修饰后,并无增长引用计数,而且做用域结束,对象释放后,修饰的对象为nil
,没有形成野指针的崩溃,能够说是一种安全的方案ide
__weak LGPerson *weakPerson;
NSLog(@"临时做用域开始");
{
LGPerson *person = [[LGPerson alloc] init];
NSLog(@"person对象:%@", person);
weakPerson = person;
}
NSLog(@"临时做用域结束");
NSLog(@"weakPerson:%@", weakPerson);
***************************打印结果******************************
2020-01-19 11:58:08.842409+0800 objc-debug[74479:19780263] 临时做用域开始
2020-01-19 11:58:08.843151+0800 objc-debug[74479:19780263] person对象:<LGPerson: 0x101712030>
2020-01-19 11:58:08.843382+0800 objc-debug[74479:19780263] LGPerson -[LGPerson dealloc]
2020-01-19 11:58:08.843572+0800 objc-debug[74479:19780263] 临时做用域结束
2020-01-19 11:58:08.843762+0800 objc-debug[74479:19780263] weakPerson:(null)
复制代码
最后咱们来看一下,平时开发使用较少的__unsafe_unretained
和上面两个的区别在哪。咱们经过结果能够发现,在做用域消失,对象就进行了销毁,而且在出做用域打印修饰对象时,出现了野指针的崩溃EXC_BAD_ACCESS函数
因此这样就看出了__weak
和__unsafe_unretained
的区别就是前者会在对象被释放的时候自动置为nil,然后者却不行。优化
__unsafe_unretained LGPerson *unsafePerson;
NSLog(@"临时做用域开始");
{
LGPerson *person = [[LGPerson alloc] init];
NSLog(@"person对象:%@", person);
unsafePerson = person;
}
NSLog(@"临时做用域结束");
NSLog(@"unsafePerson:%@", unsafePerson);
***************************打印结果******************************
2020-01-19 12:02:34.428120+0800 objc-debug[74513:19785153] 临时做用域开始
2020-01-19 12:02:34.428813+0800 objc-debug[74513:19785153] person对象:<LGPerson: 0x1019159f0>
2020-01-19 12:02:34.428901+0800 objc-debug[74513:19785153] LGPerson -[LGPerson dealloc]
2020-01-19 12:02:34.429015+0800 objc-debug[74513:19785153] 临时做用域结束
复制代码
__strong
修饰后,对象的引用计数会增长,在做用域外不会销毁__weak
修饰后,对象引用计数不会增长,在做用域外会自动置为nil
__unsafe_unretained
修饰后,引用计数不会增长,在做用域外不会置空,会形成野指针崩溃经过上面例子基本了解了__weak的做用,那么__weak是如何进行建立和销毁的呢,下面经过源码进行深度探索 ui
仍是使用刚才的例子,直接跟踪汇编和打符号断点,发现底层库调了objc_initWeak
函数this
其中两个参数location
和newObj
的含义以下spa
location
:表示__weak
指针的地址,即例子中的weak
指针取地址: &weakObjc
。它是一个指针的地址。之因此要存储指针的地址,是由于最后咱们要讲__weak
指针指向的内容置为nil
,若是仅存储指针的话,是不可以完成这个功能的。newObj
:所引用的对象,即例子中的person
。id objc_initWeak(id *location, id newObj) {
if (!newObj) {
*location = nil;
return nil;
}
return storeWeak<DontHaveOld, DoHaveNew, DoCrashIfDeallocating>
(location, (objc_object*)newObj);
}
复制代码
查看storeWeak
源码,根据注释,能够知道以下几点
HaveOld
:weak
指针以前是否已经指向了一个弱引用HaveNew
:weak
指针是否须要指向一个新引用CrashIfDeallocating
:若是被弱引用的对象正在析构,此时再弱引用该对象,是否应该crash
。// Update a weak variable.
// If HaveOld is true, the variable has an existing value
// that needs to be cleaned up. This value might be nil.
// If HaveNew is true, there is a new value that needs to be
// assigned into the variable. This value might be nil.
// If CrashIfDeallocating is true, the process is halted if newObj is
// deallocating or newObj's class does not support weak references.
// If CrashIfDeallocating is false, nil is stored instead.
enum CrashIfDeallocating {
DontCrashIfDeallocating = false, DoCrashIfDeallocating = true
};
template <HaveOld haveOld, HaveNew haveNew,
CrashIfDeallocating crashIfDeallocating>
static id storeWeak(id *location, objc_object *newObj) {
assert(haveOld || haveNew);
if (!haveNew) assert(newObj == nil);
Class previouslyInitializedClass = nil;
id oldObj;
SideTable *oldTable;
SideTable *newTable;
// Acquire locks for old and new values.
// Order by lock address to prevent lock ordering problems.
// Retry if the old value changes underneath us.
retry:
✅// 若是weak指针以前弱引用过一个obj,则将这个obj所对应的SideTable取出,赋值给oldTable
if (haveOld) {
oldObj = *location;
oldTable = &SideTables()[oldObj];
} else {
// 没有弱引用过,则oldTable = nil
oldTable = nil;
}
✅// 若是weak指针要弱引用一个新的obj,则将该obj对应的SideTable取出,赋值给newTable
if (haveNew) {
newTable = &SideTables()[newObj];
} else {
newTable = nil;
}
✅// 加锁操做,防止多线程中竞争冲突
SideTable::lockTwo<haveOld, haveNew>(oldTable, newTable);
✅// location 应该与 oldObj 保持一致,若是不一样,说明当前的 location 已经处理过 oldObj 但是又被其余线程所修改
if (haveOld && *location != oldObj) {
SideTable::unlockTwo<haveOld, haveNew>(oldTable, newTable);
goto retry;
}
// Prevent a deadlock between the weak reference machinery
// and the +initialize machinery by ensuring that no
// weakly-referenced object has an un-+initialized isa.
if (haveNew && newObj) {
Class cls = newObj->getIsa();
✅// 若是cls尚未初始化,先初始化,再尝试设置弱引用
if (cls != previouslyInitializedClass &&
!((objc_class *)cls)->isInitialized())
{
SideTable::unlockTwo<haveOld, haveNew>(oldTable, newTable);
_class_initialize(_class_getNonMetaClass(cls, (id)newObj));
// If this class is finished with +initialize then we're good.
// If this class is still running +initialize on this thread
// (i.e. +initialize called storeWeak on an instance of itself)
// then we may proceed but it will appear initializing and
// not yet initialized to the check above.
// Instead set previouslyInitializedClass to recognize it on retry.
✅// 完成初始化后进行标记
previouslyInitializedClass = cls;
✅// newObj 初始化后,从新获取一遍newObj
goto retry;
}
}
// Clean up old value, if any.
✅// 若是weak指针以前弱引用过别的对象oldObj,则调用weak_unregister_no_lock,在oldObj的weak_entry_t中移除该weak指针地址
if (haveOld) {
weak_unregister_no_lock(&oldTable->weak_table, oldObj, location);
}
// Assign new value, if any.
✅// 若是weak指针须要弱引用新的对象newObj
if (haveNew) {
✅ // 调用weak_register_no_lock方法,将weak指针的地址记录到newObj对应的weak_entry_t中
newObj = (objc_object *)
weak_register_no_lock(&newTable->weak_table, (id)newObj, location,
crashIfDeallocating);
// weak_register_no_lock returns nil if weak store should be rejected
// Set is-weakly-referenced bit in refcount table.
✅// 更新newObj的isa指针的weakly_referenced bit标志位
if (newObj && !newObj->isTaggedPointer()) {
newObj->setWeaklyReferenced_nolock();
}
// Do not set *location anywhere else. That would introduce a race.
✅// *location 赋值,也就是将weak指针直接指向了newObj,并且没有将newObj的引用计数+1
*location = (id)newObj;
}
else {
// No new value. The storage is not changed.
}
SideTable::unlockTwo<haveOld, haveNew>(oldTable, newTable);
return (id)newObj;
}
复制代码
由于咱们这里是第一次调用,因此是一个新的对象,也就是haveNew
的状况,获取到的是新的散列表SideTable
,主要执行了weak_register_no_lock
方法来进行插入。
接着咱们来分析weak_register_no_lock
函数,是怎么注册弱引用的。
咱们发现函数内部主要进行了isTaggedPointer
和deallocating
的判断等前置条件,这些都是不能进行弱引用的状况。
若是能够被弱引用,则将被弱引用对象所在的weak_table中
的weak_entry_t
哈希数组中取出对应的weak_entry_t
,若是weak_entry_t
不存在,则会新建一个。而后将指向被弱引用对象地址的指针referrer
经过函数append_referrer
插入到对应的weak_entry_t
引用数组。至此就完成了弱引用。
id weak_register_no_lock(weak_table_t *weak_table, id referent_id, id *referrer_id, bool crashIfDeallocating) {
✅//首先获取须要弱引用对象
objc_object *referent = (objc_object *)referent_id;
objc_object **referrer = (objc_object **)referrer_id;
✅// 若是被弱引用对象referent为nil 或者被弱引用对象采用了TaggedPointer计数方式,则直接返回
if (!referent || referent->isTaggedPointer()) return referent_id;
// ensure that the referenced object is viable
✅// 确保被引用的对象可用(没有在析构,同时应该支持weak弱引用)
bool deallocating;
if (!referent->ISA()->hasCustomRR()) {
deallocating = referent->rootIsDeallocating();
}
else {
BOOL (*allowsWeakReference)(objc_object *, SEL) =
(BOOL(*)(objc_object *, SEL))
object_getMethodImplementation((id)referent,
SEL_allowsWeakReference);
if ((IMP)allowsWeakReference == _objc_msgForward) {
return nil;
}
deallocating =
! (*allowsWeakReference)(referent, SEL_allowsWeakReference);
}
✅// 若是是正在析构的对象,那么不可以被弱引用
if (deallocating) {
if (crashIfDeallocating) {
_objc_fatal("Cannot form weak reference to instance (%p) of "
"class %s. It is possible that this object was "
"over-released, or is in the process of deallocation.",
(void*)referent, object_getClassName((id)referent));
} else {
return nil;
}
}
// now remember it and where it is being stored
✅// 在 weak_table 中找到被弱引用对象 referent 对应的 weak_entry,并将 referrer 加入到 weak_entry 中
weak_entry_t *entry;
if ((entry = weak_entry_for_referent(weak_table, referent))) {
✅// 若是能找到 weak_entry,则讲 referrer 插入到 weak_entry 中
append_referrer(entry, referrer);
}
else {
✅// 若是找不到 weak_entry,就新建一个
weak_entry_t new_entry(referent, referrer);
weak_grow_maybe(weak_table);
weak_entry_insert(weak_table, &new_entry);
}
// Do not set *referrer. objc_storeWeak() requires that the
// value not change.
return referent_id;
}
复制代码
这一步主要是找到弱引用对象的对应的weak_entry
哈希数组中,基本就是个遍历插入的过程,原理比较简单
static void append_referrer(weak_entry_t *entry, objc_object **new_referrer) {
✅// 若是weak_entry 使用静态数组 inline_referrers
if (! entry->out_of_line()) {
// Try to insert inline.
✅// 尝试将 referrer 插入数组
for (size_t i = 0; i < WEAK_INLINE_COUNT; i++) {
if (entry->inline_referrers[i] == nil) {
entry->inline_referrers[i] = new_referrer;
return;
}
}
// Couldn't insert inline. Allocate out of line.
✅// 若是inline_referrers的位置已经存满了,则要转型为 referrers,动态数组
weak_referrer_t *new_referrers = (weak_referrer_t *)
calloc(WEAK_INLINE_COUNT, sizeof(weak_referrer_t));
// This constructed table is invalid, but grow_refs_and_insert
// will fix it and rehash it.
for (size_t i = 0; i < WEAK_INLINE_COUNT; i++) {
new_referrers[i] = entry->inline_referrers[i];
}
entry->referrers = new_referrers;
entry->num_refs = WEAK_INLINE_COUNT;
entry->out_of_line_ness = REFERRERS_OUT_OF_LINE;
entry->mask = WEAK_INLINE_COUNT-1;
entry->max_hash_displacement = 0;
}
assert(entry->out_of_line());
✅// 若是动态数组中元素个数大于或等于数组总空间的3/4,则扩展数组空间为当前长度的一倍,而后将 referrer 插入数组
if (entry->num_refs >= TABLE_SIZE(entry) * 3/4) {
return grow_refs_and_insert(entry, new_referrer);
}
✅// 若是不须要扩容,直接插入到weak_entry中
✅// & (entry->mask) 保证 begin 的位置只能大于或等于数组的长度
size_t begin = w_hash_pointer(new_referrer) & (entry->mask);
size_t index = begin;
size_t hash_displacement = 0;
while (entry->referrers[index] != nil) {
hash_displacement++;
index = (index+1) & entry->mask;
if (index == begin) bad_weak_table(entry);
}
if (hash_displacement > entry->max_hash_displacement) {
entry->max_hash_displacement = hash_displacement;
}
weak_referrer_t &ref = entry->referrers[index];
ref = new_referrer;
entry->num_refs++;
}
复制代码
若是weak
指针在指向obj
以前,已经弱引用了其余的对象,则须要先将weak指针从其余对象的weak_entry_t
的hash
数组中移除。在storeWeak
方法中会调用weak_unregister_no_lock
函数来作移除操做,咱们来看一下weak_unregister_no_lock
函数源码
weak_unregister_no_lock
函数首先会在weak_table
中找出之前被弱引用的对象referent
对应的weak_entry_t
,在weak_entry_t
中移除被弱引用的对象referrer
。移除元素后,判断此时weak_entry_t
中是否还有元素。若是此时weak_entry_t
已经没有元素了,则须要将weak_entry_t
从weak_table
中移除。
void weak_unregister_no_lock(weak_table_t *weak_table, id referent_id, id *referrer_id) {
✅// 拿到之前弱引用的对象和对象的地址
objc_object *referent = (objc_object *)referent_id;
objc_object **referrer = (objc_object **)referrer_id;
weak_entry_t *entry;
if (!referent) return;
✅// 查找到之前弱引用的对象 referent 所对应的 weak_entry_t
if ((entry = weak_entry_for_referent(weak_table, referent))) {
✅// 在之前弱引用的对象 referent 所对应的 weak_entry_t 的 hash 数组中,移除弱引用 referrer
remove_referrer(entry, referrer);
✅// 移除元素以后, 要检查一下 weak_entry_t 的 hash 数组是否已经空了
bool empty = true;
if (entry->out_of_line() && entry->num_refs != 0) {
empty = false;
}
else {
for (size_t i = 0; i < WEAK_INLINE_COUNT; i++) {
if (entry->inline_referrers[i]) {
empty = false;
break;
}
}
}
✅// 若是 weak_entry_t 的hash数组已经空了,则须要将 weak_entry_t 从 weak_table 中移除
if (empty) {
weak_entry_remove(weak_table, entry);
}
}
// Do not set *referrer = nil. objc_storeWeak() requires that the
// value not change.
}
复制代码
至此,一个对象的弱引用过程已经结束
经过开头的例子,咱们知道,出做用域,对象dealloc
后,会自动把弱引用对象置空,那么他是怎么实现的,咱们能够简单查看下类的dealloc
流程
- (void)dealloc {
_objc_rootDealloc(self);
}
**********************************
void _objc_rootDealloc(id obj)
{
assert(obj);
obj->rootDealloc();
}
***********************************
inline void objc_object::rootDealloc()
{
//✅若是是Tagged Pointer,就直接返回
if (isTaggedPointer()) return; // fixme necessary?
/*
✅若是同时知足
1. 是优化过的isa、
2. 没有被weak指针引用过、
3. 没有关联对象、
4. 没有C++析构函数、
5. 没有sideTable,
就能够直接释放内存free()
*/
if (fastpath(isa.nonpointer &&
!isa.weakly_referenced &&
!isa.has_assoc &&
!isa.has_cxx_dtor &&
!isa.has_sidetable_rc))
{
assert(!sidetable_present());
free(this);
}
else {//不然的话就须要经过下面的函数处理
object_dispose((id)this);
}
}
复制代码
咱们这里显然不知足上述条件,由于咱们弱引用过,继续跟进object_dispose
object_dispose
函数中调用了objc_destructInstance
id object_dispose(id obj) {
if (!obj) return nil;
objc_destructInstance(obj);
free(obj);
return nil;
}
***********************************
复制代码
咱们能够看到内部会作销毁C++析构函数以及移除关联对象的操做,看来弱引用要在clearDeallocating
中了
void *objc_destructInstance(id obj) {
if (obj) {
// Read all of the flags at once for performance
bool cxx = obj->hasCxxDtor();
bool assoc = obj->hasAssociatedObjects();
// This order is important.
✅ // 若是有C++析构函数,则从类中销毁C++析构函数
if (cxx) object_cxxDestruct(obj);
✅// 若是有关联对象,则移除全部的关联对象,并将其自身从Association Manager的map中移除
if (assoc) _object_remove_assocations(obj);
✅// 继续清理其它相关的引用
obj->clearDeallocating();
}
return obj;
}
复制代码
inline void
objc_object::clearDeallocating()
{
if (slowpath(!isa.nonpointer)) {
// Slow path for raw pointer isa.
✅// 若是要释放的对象没有采用了优化过的isa引用计数
sidetable_clearDeallocating();
}
else if (slowpath(isa.weakly_referenced || isa.has_sidetable_rc)) {
// Slow path for non-pointer isa with weak refs and/or side table data.
✅// 若是要释放的对象采用了优化过的isa引用计数,而且有弱引用或者使用了sideTable的辅助引用计数
clearDeallocating_slow();
}
assert(!sidetable_present());
}
复制代码
咱们如今通常都是使用优化的isa引用计数,因此咱们以此为目的继续探索。咱们经过源码能够看到主要是操做为找到对应的SideTable
,而后再SideTable
的weak_table
中,将弱引用对象置空,主要的方法为weak_clear_no_lock
NEVER_INLINE void
objc_object::clearDeallocating_slow()
{
assert(isa.nonpointer && (isa.weakly_referenced || isa.has_sidetable_rc));
✅// 在全局的SideTables中,以this指针(要释放的对象)为key,找到对应的SideTable
SideTable& table = SideTables()[this];
table.lock();
if (isa.weakly_referenced) {
✅//要释放的对象被弱引用了,经过weak_clear_no_lock函数将指向该对象的弱引用指针置为nil
weak_clear_no_lock(&table.weak_table, (id)this);
}
✅//使用了sideTable的辅助引用计数,直接在SideTable中擦除该对象的引用计数
if (isa.has_sidetable_rc) {
table.refcnts.erase(this);
}
table.unlock();
}
复制代码
咱们经过源码能够看到,这不方法和插入时的方法比较相似,都是找到对应的eak_entry_t
数组,而后经过遍历找到对应的指针地址,而后置为nil
,防止了野指针的报错
void weak_clear_no_lock(weak_table_t *weak_table, id referent_id) {
✅//获取被弱引用对象的地址
objc_object *referent = (objc_object *)referent_id;
✅// 根据对象地址找到被弱引用对象referent在weak_table中对应的weak_entry_t
weak_entry_t *entry = weak_entry_for_referent(weak_table, referent);
if (entry == nil) {
/// XXX shouldn't happen, but does with mismatched CF/objc
//printf("XXX no entry for clear deallocating %p\n", referent);
return;
}
// zero out references
weak_referrer_t *referrers;
size_t count;
✅// 找出弱引用该对象的全部weak指针地址数组
if (entry->out_of_line()) {
referrers = entry->referrers;
count = TABLE_SIZE(entry);
}
else {
referrers = entry->inline_referrers;
count = WEAK_INLINE_COUNT;
}
✅// 遍历取出每一个weak指针的地址
for (size_t i = 0; i < count; ++i) {
objc_object **referrer = referrers[i];
if (referrer) {
✅// 若是weak指针确实弱引用了对象 referent,则将weak指针设置为nil
if (*referrer == referent) {
*referrer = nil;
}
✅// 若是所存储的weak指针没有弱引用对象 referent,这多是因为runtime代码的逻辑错误引发的,报错
else if (*referrer) {
_objc_inform("__weak variable at %p holds %p instead of %p. "
"This is probably incorrect use of "
"objc_storeWeak() and objc_loadWeak(). "
"Break on objc_weak_error to debug.\n",
referrer, (void*)*referrer, (void*)referent);
objc_weak_error();
}
}
}
weak_entry_remove(weak_table, entry);
}
复制代码
至此,一个弱引用的销毁也完成了,并自动置为nil
sideTable
类的weak_table
这个散列表上对应的一个weak指针数组
里面。dealloc
方法被调用时,Runtime会以obj为key,从sideTable
的weak_table
散列表中,找出对应的weak指针列
表,而后将里面的weak指针逐个置为nil
。Runtime维护了一个弱引用表,将全部弱引用obj
的指针地址都保存在obj
对应的weak_entry_t中
。
SideTables
中对应的弱引用表weak_table
weak_table
中被弱引用对象的referent
,并建立或者插入对应的weak_entry_t
append_referrer(entry, referrer)
将个人新弱引⽤的对象加进去entry
weak_entry_insert
把entry
加⼊到咱们的weak_table
nil
weak_entry_t
移除出弱引用表weak_table
。