Flink的window、时间语义,Watermark机制,多代码案例详解,Flink学习入门(三)

你们好,我是后来,我会分享我在学习和工做中遇到的点滴,但愿有机会个人某篇文章可以对你有所帮助,全部的文章都会在公众号首发,欢迎你们关注个人公众号" 后来X大数据 ",感谢你的支持与承认。

经过前2篇flink的学习,已经基本掌握了flink的基本使用,可是关于flink真正内核的东西还没开始说,那先简单介绍一下,flink的核心亮点:html

  1. 窗口
  2. 时间语义
  3. 精准一次性

咱们在第一篇的学习了解到了flink的wordCount,以及在第二篇的API 中,咱们也只是获取到数据,进行简单的转换,就直接把数据输出。java

可是咱们在以前都是以事件为驱动,等于说是来了一条数据,我就处理一次,可是如今遇到的问题是:apache

咱们能够简单的把wordCount的需求比作公司的订单金额,也就是订单金额会随着订单的增长而只增不减,那么若是运营部门提了如下需求:编程

  1. 每有1000条订单就输出一次这1000条订单的总金额
  2. 每5分钟输出一次刚刚过去这5分钟的订单总金额
  3. 每3秒输出一次最近5分钟内的累计成交额
  4. 连续2条订单的间隔时间超过30秒就按照这个时间分为2组订单,输出前一组订单的总金额

那么面对这个需求,由于时间一直是流动的,你们有什么想法?windows

基于这些需求,咱们来说一下flink的窗口。api

窗口

窗口:不管是hive中的开窗函数,仍是Spark中的批次计算中的窗口,仍是咱们这里讲的窗口,本质上都是对数据进行划分,而后对划分后的数据进行计算。网络

那么Windows是处理无限流的核心。Windows将流分红有限大小的“存储桶”,咱们能够在其上应用计算。app

在flink中,窗口式Flink程序通常有2类,框架

  1. 键控流
stream
       .keyBy(...)               <-  keyed versus non-keyed windows
       .window(...)              <-  required: "assigner"
      [.trigger(...)]            <-  optional: "trigger" (else default trigger)
      [.evictor(...)]            <-  optional: "evictor" (else no evictor)
      [.allowedLateness(...)]    <-  optional: "lateness" (else zero)
      [.sideOutputLateData(...)] <-  optional: "output tag" (else no side output for late data)
       .reduce/aggregate/fold/apply()      <-  required: "function"
      [.getSideOutput(...)]      <-  optional: "output tag"
  1. 非键控流
stream
       .windowAll(...)           <-  required: "assigner"
      [.trigger(...)]            <-  optional: "trigger" (else default trigger)
      [.evictor(...)]            <-  optional: "evictor" (else no evictor)
      [.allowedLateness(...)]    <-  optional: "lateness" (else zero)
      [.sideOutputLateData(...)] <-  optional: "output tag" (else no side output for late data)
       .reduce/aggregate/fold/apply()      <-  required: "function"
      [.getSideOutput(...)]      <-  optional: "output tag"

惟一的区别是:对键控流的keyBy(…)调用window(…),而非键控流则是调用windowAll(…)。socket

窗口的生命周期

咱们上面说窗口就是对数据进行划分到不一样的“桶”中,而后进行计算,那么什么开始有这个桶,何时就算是分完了呢?
简而言之,一旦应属于该窗口的第一个元素到达,就会建立一个窗口,当时间超过用户设置的时间戳时,flink将删除这个窗口。

那咱们来理解一下窗口的类型:

  1. CountWindow:按照指定的数据条数生成一个Window,与时间无关。
  2. TimeWindow:按照时间生成Window。

    1. 滚动窗口
    2. 滑动窗口
    3. 会话窗口

从文字也不难看出,CountWindow就是按照数据条数生成窗口,样例代码以下:

import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.streaming.api.scala._

object CountWindowsTest {
  def main(args: Array[String]): Unit = {
    val env = StreamExecutionEnvironment.getExecutionEnvironment

    val wordDS = env.socketTextStream("master102",3456)

    wordDS
      .map((_,1))
      .keyBy(0)
      //累计单个Key中3条数据就进行处理
      .countWindow(3)
      .sum(1)
      .print("测试:")

    env.execute()
  }
}

执行结果以下:
在这里插入图片描述
能够看出,不一样的单词根据keyby进入不一样的窗口,而后当窗口中的单个key的数据个数达到3个以后进行输出。

接下来,咱们主要来讲一下时间窗口,这些窗口的结束与开始都是根据数据的时间来判断的,因此这里就引出了咱们今天的第二个重点:时间语义

时间语义

Flink 在流式传输程序中支持不一样的时间概念:

  1. Event Time:事件时间是每一个事件在其生产设备上发生的时间。它一般由事件中的时间戳描述,例如采集的日志数据中,每一条日志都会记录本身的生成时间,Flink经过时间戳分配器访问事件时间戳。
  2. Ingestion Time:摄取时间是数据进入Flink的时间。摄取时间从概念上讲介于事件时间和处理时间之间。
  3. Processing Time:处理时间是是指正在执行相应算子操做的机器的系统时间,默认的时间属性就是Processing Time。 处理时间是最简单的时间概念,不能提供肯定性,由于它容易依赖数据到达系统(例如从消息队列)到达系统的速度,以及数据在系统内部之间流动的速度。

咱们根据业务的需求还判断使用哪一个时间类型,通常来讲使用Event Time更多,好比:在统计最近5分钟的订单总金额时,咱们须要的是真实的订单时间,而不是进入flink的时间或者是处理时间。

在Flink的流式处理中,绝大部分的业务都会使用EventTime,通常只在EventTime没法使用时,才会被迫使用ProcessingTime或者IngestionTime。默认状况下,Flink框架中处理的时间语义为ProcessingTime,若是要使用EventTime,那么须要引入EventTime的时间属性,引入方式以下所示:

import org.apache.flink.streaming.api.TimeCharacteristic

val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)

这里注意:若是要使用事件时间,那么必需要为数据定义事件时间,而且还要注册水位线

好了,又是一个新的知识点:水位线

咱们暂时先有这些概念,而后咱们再返回来继续说咱们的窗口的类型。说完窗口类型,再详细说水位线的应用。

因此这也为后面的数据乱序埋下了坑,好比,2条订单,它们的订单时间差很少,一前一后,可是由于先下单的这条订单的网络状况很差,致使后到达flink窗口,也就是咱们常说的数据乱序,那么这种状况该怎么办?咱们后面再说这个问题

特别注意:窗口是左闭右开的。

滚动窗口

滚动窗口具备固定的尺寸和不重叠,例如,若是指定大小为5分钟的滚动窗口,则每五分钟将启动一个新窗口,以下图所示。
在这里插入图片描述
样例代码以下:

import java.text.SimpleDateFormat

import org.apache.flink.api.java.tuple.Tuple
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.windowing.time.Time
import org.apache.flink.streaming.api.windowing.windows.TimeWindow
import org.apache.flink.util.Collector
/**
  * @description: ${description}
  * @author: Liu Jun Jun
  * @create: 2020-06-29 13:59
  **/
object WindowTest {
  def main(args: Array[String]): Unit = {
    val env = StreamExecutionEnvironment.getExecutionEnvironment

    val dataDS = env.socketTextStream("bigdata101", 3456)

    val tsDS = dataDS.map(str => {
      val strings = str.split(",")
      (strings(0), strings(1).toLong, 1)
    }).keyBy(0)
      //窗口大小为5s的滚动窗口
      //.timeWindow(Time.seconds(5))和下面的这种写法都是能够的
      .window(TumblingProcessingTimeWindows.of(Time.seconds(5)))
      .apply {
        (tuple: Tuple, window: TimeWindow, es: Iterable[(String, Long, Int)], out: Collector[String]) => {
          val sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss")
          //out.collect(s"window:[${sdf.format(new Date(window.getStart))}-${sdf.format(new Date(window.getEnd))}]:{ ${es.mkString(",")} }")
          out.collect(s"window:[${window.getStart}-${window.getEnd}]:{ ${es.mkString(",")} }")
        }
      }.print("windows:>>>")

    env.execute()
  }
}

经过运行,大概会发现,咱们输入的时间戳并不会起做用,默认使用的确实是处理时间:
在这里插入图片描述
同时,能够看出,滚动窗口的时间窗口不会有重叠,一条数据只会属于一个窗口,并且,窗口是左闭右开的。

滑动窗口

滑动窗口也是固定长度的窗口,不过因为滑动的频率,当滑动频率小于窗口大小时,滑动窗口会重叠,在这种状况下,一个元素被分配到多个窗口。
例如:指定大小为10分钟的窗口滑动5分钟。这样,您每隔5分钟就会获得一个窗口,其中包含最近10分钟内到达的事件,以下图所示。
在这里插入图片描述
接下来,我只贴改动代码,其他代码和上面的滚动代码是同样的:

//滚动5秒,滑动3秒
//.window(SlidingProcessingTimeWindows.of(Time.seconds(5), Time.seconds(3)))和下面的这句话是同样的
 .timeWindow(Time.seconds(5),Time.seconds(3))

在这里插入图片描述
很是关键的是:你们发现,flink默认的分配窗口是从每秒从0开始数的,举例:会把5秒的窗口分为:
[0-5),[5,10),[10-15),....
3秒的窗口为:
[0-3),[3,6),[6-9),....

会话窗口

与滚动窗口和滑动窗口相比,会话窗口不重叠且没有固定的开始和结束时间。相反,会话窗口在必定时间段内未收到元素时(即,出现不活动间隙时)关闭。随后的元素将分配给新的会话窗口。
在这里插入图片描述

.window(ProcessingTimeSessionWindows.withGap(Time.seconds(10)))

在这里插入图片描述
能够看出,此次的窗口大小并非固定的,那么我在测试输入的时候,输完一些后等了一下子才继续输入的,那么就出现了第一个窗口,因此只要processtime间隔时间超过10s,就会输出上一个窗口。

总结窗口的知识点:

  1. 以上全部的窗口的时间均可以更改成EventTime,同时时间间隔能够指定为Time.milliseconds(x),Time.seconds(x),Time.minutes(x)

若是使用timewindow()方法,那么会随着事件时间的指定会更改成以事件时间为标准的窗口,而若是使用window()方法,那么其中的参数会发生变化。

//滚动窗口
 //事件时间
 .window(TumblingEventTimeWindows.of(Time.seconds(5)))
 //处理时间
 .window(TumblingProcessingTimeWindows.of(Time.seconds(5)))

//滑动窗口
 //事件时间
 .window(SlidingEventTimeWindows.of(Time.seconds(10), Time.seconds(5)))
 //处理时间
 .window(SlidingProcessingTimeWindows.of(Time.seconds(10), Time.seconds(5)))

//会话窗口
 //事件时间
 .window(EventTimeSessionWindows.withGap(Time.minutes(10)))
 //处理时间
 .window(ProcessingTimeSessionWindows.withGap(Time.minutes(10)))
  1. flink默认的分配窗口是从每秒从0开始数的,举例:会把5秒的窗口分为:

[0-5),[5,10),[10-15),....
3秒的窗口为:
[0-3),[3,6),[6-9),....

那么可不能够作到窗口的划分为[1-6),[6,11)...
固然能够,flink有窗口偏移设置。通常用不到,我在这里简单贴一下使用方式:

//5秒的窗口偏移3秒
 .window(TumblingProcessingTimeWindows.of(Time.seconds(5), Time.seconds(3)))

在这里插入图片描述
能从上图看出,窗口从原来的80-85,偏移到了83-88。那我再把方法总结一下

//窗口偏移方法总结
//滚动窗口
 //事件时间
 .window(TumblingEventTimeWindows.of(Time.seconds(5),Time.seconds(3)))
 //处理时间
 .window(TumblingProcessingTimeWindows.of(Time.seconds(5),Time.seconds(3)))

//滑动窗口
 //事件时间
 .window(SlidingEventTimeWindows.of(Time.seconds(10), Time.seconds(5),Time.seconds(3)))
 //处理时间
 .window(SlidingProcessingTimeWindows.of(Time.seconds(10), Time.seconds(5),Time.seconds(3)))

//会话窗口
 //事件时间
 .window(EventTimeSessionWindows.withGap(Time.minutes(10),Time.seconds(3)))
 //处理时间
 .window(ProcessingTimeSessionWindows.withGap(Time.minutes(10),Time.seconds(3)))

关于窗口的使用基本上差很少了,接下来只要说一说水位线

水位线WaterMark

WaterMark,叫作水位线,那它是干啥的?支持事件时间的流处理器须要一种衡量事件时间进度的方法。
这里要注意:使用事件时间必需要使用注册水位线,而水位线也是事件时间专用的
例如,当以事件时间开窗1小时,目前窗口刚超过一个小时,须要通知构建每小时窗口的窗口操做员,关闭正在进行中的这个窗口程序。

那问题来了,怎么衡量时间到了没?因此Flink中用于衡量事件时间进度的机制是水位线。

强调:并非每条数据都会生成水位线。水位线也是一条数据,是流数据的一部分,watermark是一个全局的值,不是某一个key下的值,因此即便不是同一个key的数据,其warmark也会增长。

同时,水位线还有一个重要做用,就是处理延迟数据,咱们在文章开头的部分也提到了,数据乱序怎么处理,那么有些数据由于网络的缘由,延迟了几秒,因此也能够把水位线看做是窗口最后的执行时间

好比说,咱们规定滚动窗口为5秒,也就是[5-10),同时咱们预测数据通常可能延迟3秒,因此咱们但愿窗口是当10s的数据到达后,继续等待3秒,看这3秒内,仍是否有本来是[5-10)中的数据,一块儿归并到这个窗口中,等到出现了时间为大于等于13s的数据时,就会触发[5-10)这个窗口的数据执行。这就是延迟处理。(代码案例看下面的周期性水位线)

那么水位线怎么生成呢?

有两种分配时间戳和生成水位线的方法:

  1. 直接在数据流源中(我如今还不知道哪一种数据源能够直接生成时间戳和水位线,因此这里不讨论了)
  2. 经过时间戳分配器/水位线生成器:在Flink中,时间戳分配器还定义要发送的水位线注意自1970-01-01T00:00:00Z的Java时代以来,时间戳和水位线都指定为毫秒。(大部分使用状况)

Event Time的使用必定要指定数据源中的时间戳。不然程序没法知道事件的事件时间是什么(数据源里的数据没有时间戳的话,就只能使用Processing Time了)。

那咱们就利用第二种方式来生成水位线吧,注意要在事件时间的第一个操做(例如第一个窗口操做)以前指定分配器,例如:
在这里插入图片描述
咱们发现注册水位线的有2个接口能够实现:

  1. AssignerWithPeriodicWatermarks(周期性生成水位线)
  2. AssignerWithPunctuatedWatermarks(标记性生成水位线)

一个一个说,先说周期性生成水位线:

周期性水位线

//flink默认200ms(毫秒)生成一条水位线,那咱们也能够修改
@PublicEvolving
    public void setStreamTimeCharacteristic(TimeCharacteristic characteristic) {
        this.timeCharacteristic = Preconditions.checkNotNull(characteristic);
        if (characteristic == TimeCharacteristic.ProcessingTime) {
            getConfig().setAutoWatermarkInterval(0);
        } else {
            getConfig().setAutoWatermarkInterval(200);
        }
    }
    
//单位是毫秒,因此我这里模拟设置的为10s
env.getConfig.setAutoWatermarkInterval(10000)

那么这里的时间间隔指的是系统时间的10s,可不是事件时间的10s,这个不要弄混,不相信的话能够等会看个人测试案例。

import java.text.SimpleDateFormat
import org.apache.flink.api.java.tuple.Tuple
import org.apache.flink.streaming.api.TimeCharacteristic
import org.apache.flink.streaming.api.functions.AssignerWithPeriodicWatermarks
import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.watermark.Watermark
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows
import org.apache.flink.streaming.api.windowing.time.Time
import org.apache.flink.streaming.api.windowing.windows.TimeWindow
import org.apache.flink.util.Collector

/**
  * @description: ${本案例模拟的是:以事件时间为标准,窗口滚动时间为5秒}
  * @author: Liu Jun Jun
  * @create: 2020-06-28 18:31
  **/
object WaterMarkTest {
  def main(args: Array[String]): Unit = {

    val env = StreamExecutionEnvironment.getExecutionEnvironment
    //设置以事件时间为基准
    env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
    //并行度设置为1。关于并行度的案例会在后面测试
    env.setParallelism(1)
    //设置10s生成一次水位线
    env.getConfig.setAutoWatermarkInterval(10000)

    val dataDS = env.socketTextStream("bigdata101", 3456)

    val tsDS = dataDS.map(str => {
      val strings = str.split(",")
      (strings(0), strings(1).toLong, 1)
    }).assignTimestampsAndWatermarks(

      new AssignerWithPeriodicWatermarks[(String,Long,Int)]{
        var maxTs :Long= 0
//获得水位线,周期性调用这个方法,获得水位线,我这里设置的也就是延迟5秒
        override def getCurrentWatermark: Watermark = new Watermark(maxTs - 5000)
//负责抽取事件事件
        override def extractTimestamp(element: (String, Long, Int), previousElementTimestamp: Long): Long = {
          maxTs = maxTs.max(element._2 * 1000L)
          element._2 * 1000L
        }
      }

      /*new BoundedOutOfOrdernessTimestampExtractor[(String, Long, Int)](Time.seconds(5)) {
        override def extractTimestamp(element: (String, Long, Int)): Long = element._2 * 1000
      }*/
    )
    val result = tsDS
      .keyBy(0)
      //窗口大小为5s的滚动窗口
      .timeWindow(Time.seconds(5))
      .apply {
        (tuple: Tuple, window: TimeWindow, es: Iterable[(String, Long, Int)], out: Collector[String]) => {
          val sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss")
          //out.collect(s"window:[${sdf.format(new Date(window.getStart))}-${sdf.format(new Date(window.getEnd))}]:{ ${es.mkString(",")} }")
          out.collect(s"window:[${window.getStart}-${window.getEnd}]:{ ${es.mkString(",")} }")
        }
      }
    tsDS.print("water")
    result.print("windows:>>>")

    env.execute()
  }
}

在这里插入图片描述
那么从结果能够看出:
【10- 15)的窗口是20这条数据触发的,在我输入20这条数据等了几秒后输出了第一个窗口
证明:10s的间隔时间为系统时间,同时水位线=当前时间戳 - 延迟时间 ,若是窗口的end time <= 水位线,则会触发这个窗口的执行

【15- 20)的窗口是25这条数据触发的,一样符合窗口的end time <= 水位线

那么若是数据的窗口已经触发了,但还有一点数据仍是迟到了怎么办?
全部还有个概念就是allowedLateness(容许接收延迟数据),而且还会继续把数据放入对应的窗口。看代码吧:

//其他代码和上面案例的同样,只是在开窗以后多了一行
 .keyBy(0)
      .timeWindow(Time.seconds(5))
      //具体这2秒表明什么意思,看完测试结果案例就懂了
      .allowedLateness(Time.seconds(2)
      .apply{}

在这里插入图片描述
经过看图应该能明白这里allowedLateness(Time.seconds(2)是什么意思了,只要是窗口触发后,时间小于设定的延迟时间,收到的延迟数据均可以处理,但要是没有设置allowedLateness(Time.seconds(2)),那么窗口触发后的延迟数据都不会处理。

数据的延迟老是不可彻底预测的,假如时间已经超过了容许接收的延迟数据时间,还有一点点数据迟到,就是上图中,在22这条数据以后我输入的14这条数据,那怎么办?这种状况下,咱们不能为了偶尔的一点数据就把全部窗口的等待时间延迟好久,全部还有个概念就是侧输出流,将晚到的数据放置在侧输出流中。来看代码:

//只加了3行,其他的和以前的代码同样
 val outputTag = new OutputTag[(String, Long, Int)]("lateData")//新加的
    val result = tsDS
      .keyBy(0)
      .timeWindow(Time.seconds(5))
      .allowedLateness(Time.seconds(2))
      .sideOutputLateData(outputTag)//新加的
      .apply {}
result.getSideOutput(outputTag).print("side>>>")//新加的

在这里插入图片描述

标记性水位线

知识不少东西是想通的,因此开始讲延迟数据就巴拉巴拉一堆,再继续说间标记水位线,为何叫作标记呢?由于这种水位线的生成与时间无关,而是决定于什么时候收到标记事件。
默认状况下,全部的数据都属于标记事件,意味着每条数据都会生成水位线。
因此使用这种方式的时候,须要对某些特定事件进行标记。

object WaterMarkTest {
  def main(args: Array[String]): Unit = {

    val env = StreamExecutionEnvironment.getExecutionEnvironment
    env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
    val dataDS = env.socketTextStream("bigdata101", 3456)
    
    val tsDS = dataDS.map(str => {
      val strings = str.split(",")
      (strings(0), strings(1).toLong, 1)
    }).assignTimestampsAndWatermarks(

      new AssignerWithPunctuatedWatermarks[(String,Long,Int)] {
        override def checkAndGetNextWatermark(lastElement: (String, Long, Int), extractedTimestamp: Long): Watermark = {
          if (lastElement._1 .contains("later")){
            println("间歇性生成了水位线.....")
            // 间歇性生成水位线数据
            new Watermark(extractedTimestamp)
          }
          return null
        }

        override def extractTimestamp(element: (String, Long, Int), previousElementTimestamp: Long): Long = {
          element._2 * 1000L
        }
      }
   )

    val result = tsDS
      .keyBy(0)
      .timeWindow(Time.seconds(5))
      .apply {
        (tuple: Tuple, window: TimeWindow, es: Iterable[(String, Long, Int)], out: Collector[String]) => {
          val sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss")
          out.collect(s"window:[${window.getStart}-${window.getEnd}]:{ ${es.mkString(",")} }")
        }
      }
    tsDS.print("water")
    result.print("calc")

    env.execute()
  }
}

看一下个人测试结果:
在这里插入图片描述
固然即使咱们设置了标记,在TPS很高的场景下依然会产生大量的Watermark,在必定程度上对下游算子形成压力,因此只有在实时性要求很是高的场景才会选择Punctuated的方式进行Watermark的生成。

关于并行度与水位线

细心的小伙伴也会发现,我在上面的全部的案例中,使用的并行度都是1,但实际生产中确定不是1啊,这个会有什么变化么?固然是有的。

我先说结论:
若是并行度不为1,那么在计算窗口时,是按照各自的并行度单独计算的。只有当全部并行度中都触发了同一个窗口,那么这个窗口才会触发。

口说无凭,咱们来看案例,此次放完整代码:

import java.text.SimpleDateFormat
import org.apache.flink.api.java.tuple.Tuple
import org.apache.flink.streaming.api.TimeCharacteristic
import org.apache.flink.streaming.api.functions.AssignerWithPeriodicWatermarks
import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.watermark.Watermark
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows
import org.apache.flink.streaming.api.windowing.time.Time
import org.apache.flink.streaming.api.windowing.windows.TimeWindow
import org.apache.flink.util.Collector

/**
  * @description: ${模拟多并行度下,窗口如何触发}
  * @author: Liu Jun Jun
  * @create: 2020-06-28 18:31
  **/
object WaterMarkTest {
  def main(args: Array[String]): Unit = {

    val env = StreamExecutionEnvironment.getExecutionEnvironment

    env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
    //注掉了并行度为1,默认并行度=cpu核数,我这里cpu为4个
    //env.setParallelism(1)
    env.getConfig.setAutoWatermarkInterval(10000)

    val dataDS = env.socketTextStream("bigdata101", 3456)

    val tsDS = dataDS.map(str => {
      val strings = str.split(",")
      (strings(0), strings(1).toLong, 1)
    }).assignTimestampsAndWatermarks(

      new AssignerWithPeriodicWatermarks[(String,Long,Int)]{
        var maxTs :Long= 0
        override def getCurrentWatermark: Watermark = new Watermark(maxTs - 5000)

        override def extractTimestamp(element: (String, Long, Int), previousElementTimestamp: Long): Long = {
          maxTs = maxTs.max(element._2 * 1000L)
          element._2 * 1000L
        }
      }
    )
    //该案例中,为了简单,去掉了allowedLateness和侧输出流
    val result = tsDS
      .keyBy(0)
      .timeWindow(Time.seconds(5))
      .apply {
        (tuple: Tuple, window: TimeWindow, es: Iterable[(String, Long, Int)], out: Collector[String]) => {
          val sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss")
          //out.collect(s"window:[${sdf.format(new Date(window.getStart))}-${sdf.format(new Date(window.getEnd))}]:{ ${es.mkString(",")} }")
          out.collect(s"window:[${window.getStart}-${window.getEnd}]:{ ${es.mkString(",")} }")
        }
      }
    tsDS.print("water")
    result.print("calc")
    env.execute()
  }
}

看一下测试结果吧:
在这里插入图片描述
好了,到这里,窗口、时间语义以及水位线的基本原理就说完了,理解了这些再看看文章开头提到了4个需求,是否是就有些想法了呢?

到目前为止,咱们只是对数据进行了开窗,可是数据在一个窗口内怎么处理尚未说,那么下一章就来讲处理函数,以及Flink的状态编程。

在此次学习中发现的不错的帖子:https://www.cnblogs.com/rossi...

扫码关注公众号“后来X大数据”,回复【电子书】,领取超多本pdf 【java及大数据 电子书】

在这里插入图片描述

相关文章
相关标签/搜索