Python提供了很是好用的多进程包multiprocessing,你只须要定义一个函数,Python会替你完成其余全部事情。借助这个包,能够轻松完成从单进程到并发执行的转换。并发
一、新建单一进程app
若是咱们新建少许进程,能够以下:async
import multiprocessing import time def func(msg): for i in xrange(3): print msg time.sleep(1) if __name__ == "__main__": p = multiprocessing.Process(target=func, args=("hello", )) p.start() p.join() print "Sub-process done."
1
2
3
4
5
6
7
8
9
10
11
12
13
|
import multiprocessing
import time
def func(msg):
for i in xrange(3):
print msg
time.sleep(1)
if __name__ == "__main__":
p = multiprocessing.Process(target=func, args=("hello", ))
p.start()
p.join()
print "Sub-process done."
|
二、使用进程池函数
是的,你没有看错,不是线程池。它能够让你跑满多核CPU,并且使用方法很是简单。spa
注意要用apply_async,若是落下async,就变成阻塞版本了。线程
processes=4是最多并发进程数量。code
import multiprocessing import time def func(msg): for i in xrange(3): print msg time.sleep(1) if __name__ == "__main__": pool = multiprocessing.Pool(processes=4) for i in xrange(10): msg = "hello %d" %(i) pool.apply_async(func, (msg, )) pool.close() pool.join() print "Sub-process(es) done."
三、使用Pool,并须要关注结果blog
更多的时候,咱们不只须要多进程执行,还须要关注每一个进程的执行结果,以下:进程
import multiprocessing import time def func(msg): for i in xrange(3): print msg time.sleep(1) return "done " + msg if __name__ == "__main__": pool = multiprocessing.Pool(processes=4) result = [] for i in xrange(10): msg = "hello %d" %(i) result.append(pool.apply_async(func, (msg, ))) pool.close() pool.join() for res in result: print res.get() print "Sub-process(es) done."