Python学习之多进程并发模块(multiprocessing)

Python提供了很是好用的多进程包multiprocessing,你只须要定义一个函数,Python会替你完成其余全部事情。借助这个包,能够轻松完成从单进程到并发执行的转换。并发

一、新建单一进程app

若是咱们新建少许进程,能够以下:async

import multiprocessing
import time

def func(msg):
    for i in xrange(3):
        print msg
        time.sleep(1)

if __name__ == "__main__":
    p = multiprocessing.Process(target=func, args=("hello", ))
    p.start()
    p.join()
    print "Sub-process done."

 

1
2
3
4
5
6
7
8
9
10
11
12
13
import multiprocessing
import time
 
def func(msg):
    for i in xrange(3):
    print msg
    time.sleep(1)
 
if __name__ == "__main__":
    p = multiprocessing.Process(target=func, args=("hello", ))
    p.start()
    p.join()
    print "Sub-process done."

二、使用进程池函数

是的,你没有看错,不是线程池。它能够让你跑满多核CPU,并且使用方法很是简单。spa

注意要用apply_async,若是落下async,就变成阻塞版本了。线程

processes=4是最多并发进程数量。code

import multiprocessing
import time

def func(msg):
    for i in xrange(3):
        print msg
        time.sleep(1)

if __name__ == "__main__":
    pool = multiprocessing.Pool(processes=4)
    for i in xrange(10):
        msg = "hello %d" %(i)
        pool.apply_async(func, (msg, ))
    pool.close()
    pool.join()
    print "Sub-process(es) done."

三、使用Pool,并须要关注结果blog

更多的时候,咱们不只须要多进程执行,还须要关注每一个进程的执行结果,以下:进程

import multiprocessing
import time

def func(msg):
    for i in xrange(3):
        print msg
        time.sleep(1)
    return "done " + msg

if __name__ == "__main__":
    pool = multiprocessing.Pool(processes=4)
    result = []
    for i in xrange(10):
        msg = "hello %d" %(i)
        result.append(pool.apply_async(func, (msg, )))
    pool.close()
    pool.join()
    for res in result:
        print res.get()
    print "Sub-process(es) done."
相关文章
相关标签/搜索