Spark SQL基本操做以及函数的使用

引语:

    本篇博客主要介绍了Spark SQL中的filter过滤数据、去重、集合等基本操做,以及一些经常使用日期函数,随机函数,字符串操做等函数的使用,并列编写了示例代码,同时还给出了代码当中用到的一些数据,放在最文章最后。sql

SparkSQL简介

    Spark SQL是Spark生态系统中很是重要的组件,其前身为Shark。Shark是Spark上的数据仓库,最初设计成与Hive兼容,可是该项目于2014年开始中止开发,转向Spark SQL。Spark SQL全面继承了Shark,并进行了优化。 Spark SQL增长了SchemaRDD(即带有Schema信息的RDD),使用户能够在Spark SQL中执行SQL语句,数据既能够来自RDD,也能够来自Hive、HDFS、Cassandra等外部数据源,还能够是JSON格式的数据。Spark SQL目前支持Scala、Java、Python三种语言,支持SQL-92规范。数据库

Spark SQL的优势

    Spark SQL能够很好地支持SQL查询,一方面,能够编写Spark应用程序使用SQL语句进行数据查询,另外一方面,也可使用标准的数据库链接器(好比JDBC或ODBC)链接Spark进行SQL查询 。apache

Spark SQL基本操做

    去重json

        distinct:根据每条数据进行完整去重。app

        dropDuplicates:根据字段去重。函数

package spark2x
​
import org.apache.spark.sql.{DataFrame, Dataset, SparkSession}
​
/**
  * 类名  DistinctDemo
  * 做者   彭三青
  * 建立时间  2018-11-29 15:02
  * 版本  1.0
  * 描述: $ 去重操做:distinct、drop
  */
​
object DistinctDemo {
  def main(args: Array[String]): Unit = {
    val spark = SparkSession.builder()
      .master("local[2]")
      .appName("Operations")
      .getOrCreate()
    import spark.implicits._
​
    val employeeDF: DataFrame = spark.read.json("E://temp/person.json")
    val employeeDS: Dataset[Employee] = employeeDF.as[Employee]
​
    println("--------------------distinct---------------------")
    // 根据每条数据进行完整的去重
    employeeDS.distinct().show()
​
    println("--------------------dropDuplicates---------------------")
    // 根据字段进行去重
    employeeDS.dropDuplicates(Seq("name")).show()
  }
}
case class Employee(name: String, age: Long, depId: Long, gender: String, salary: Double)

    过滤优化

        filter():括号里的参数能够是过滤函数、函数返回的Boolean值(为true则保留,false则过滤掉)、列名或者表达式。ui

        except:过滤出当前DataSet中有,但在另外一个DataSet中不存在的。spa

        intersect:获取两个DataSet的交集。scala

    提示:except和intersect使用的时候必需要是相同的实例,若是把另一个的Employee换成一个一样的字段的Person类就会报错。

package spark2x
​
import org.apache.spark.sql.{DataFrame, Dataset, SparkSession}
​
/**
  * 类名  FilterDemo
  * 做者   彭三青
  * 建立时间  2018-11-29 15:09
  * 版本  1.0
  * 描述: $
  */
​
object FilterDemo {
  def main(args: Array[String]): Unit = {
    val spark = SparkSession.builder()
      .master("local[2]")
      .appName("FilterDemo")
      .getOrCreate()
    import spark.implicits._
​
    val employeeDF: DataFrame = spark.read.json("E://temp/employee.json")
    val employeeDS: Dataset[Employee] = employeeDF.as[Employee]
    val employee2DF: DataFrame = spark.read.json("E://temp/employee2.json")
    val employee2DS: Dataset[Employee] = employee2DF.as[Employee]
​
    println("--------------------employee--------------------")
    employeeDS.show()
​
    println("--------------------employee2--------------------")
    employee2DS.show()
​
    println(
      "       ┏┓   ┏┓\n" +
      "     ┏┛┻━━━┛┻┓\n" +
      "   ┃       ┃\n" +
      "   ┃   ━   ┃\n" +
      "   ┃ ┳┛ ┗┳ ┃\n" +
      "   ┃       ┃\n" +
      "   ┃   ┻   ┃\n" +
      "   ┃       ┃\n" +
      "   ┗━┓   ┏━┛\n" +
      "     ┃   ┃\n" +
      "      ┃   ┃\n" +
      "     ┃   ┗━━━┓\n" +
      "     ┃       ┣┓\n" +
      "     ┃       ┏┛\n" +
      "     ┗┓┓┏━┳┓┏┛\n" +
      "      ┃┫┫ ┃┫┫\n" +
      "      ┗┻┛ ┗┻┛\n"
    )
​
    println("-------------------------------------------------")
​
    // 若是参数返回true,就保留该元素,不然就过滤掉
    employeeDS.filter(employee => employee.age == 35).show()
    employeeDS.filter(employee => employee.age > 30).show()
    // 获取当前的DataSet中有,可是在另一个DataSet中没有的元素
    employeeDS.except(employee2DS).show()
    // 获取两个DataSet的交集
    employeeDS.intersect(employee2DS).show()
​
    spark.stop()
  }
}
case class Employee(name: String, age: Long, depId: Long, gender: String, salary: Double)

    集合

        collect_set:将一个分组内指定字段的值都收集到一块儿,不去重

        collect_list:讲一个分组内指定字段的值都收集到一块儿,会去重

package spark2x
​
import org.apache.spark.sql.{DataFrame, Dataset, SparkSession}
​
/**
  * 类名  CollectSetAndList
  * 做者   彭三青
  * 建立时间  2018-11-29 15:24
  * 版本  1.0
  * 描述: $ collect_list、 collect_set
  */
​
object CollectSetAndList {
  def main(args: Array[String]): Unit = {
    val spark = SparkSession.builder()
      .master("local[2]")
      .appName("FilterDemo")
      .getOrCreate()
    import spark.implicits._
    import org.apache.spark.sql.functions._
​
    val employeeDF: DataFrame = spark.read.json("E://temp/employee.json")
    val employeeDS: Dataset[Employee] = employeeDF.as[Employee]
​
    // collect_list:将一个分组内指定字段的值都收集到一块儿,不去重
    // collect_set:同上,但惟一区别是会去重
    employeeDS
      .groupBy(employeeDS("depId"))
      .agg(collect_set(employeeDS("name")), collect_list(employeeDS("name")))
      .show()
  }
}
case class Employee(name: String, age: Long, depId: Long, gender: String, salary: Double)

    joinWith和sort

package spark2x
​
import org.apache.spark.sql.{DataFrame, Dataset, SparkSession}
​
/**
  * 类名  JoinAndSort
  * 做者   彭三青
  * 建立时间  2018-11-29 15:19
  * 版本  1.0
  * 描述: $
  */
​
object JoinAndSort {
  def main(args: Array[String]): Unit = {
    val spark = SparkSession.builder()
      .master("local[2]")
      .appName("FilterDemo")
      .getOrCreate()
    import spark.implicits._
​
    val employeeDF: DataFrame = spark.read.json("E://temp/employee.json")
    val employeeDS: Dataset[Employee] = employeeDF.as[Employee]
    val departmentDF: DataFrame = spark.read.json("E://temp/department.json")
    val departmentDS: Dataset[Department] = departmentDF.as[Department]
​
    println("----------------------employeeDS----------------------")
    employeeDS.show()
    println("----------------------departmentDS----------------------")
    departmentDS.show()
    println("------------------------------------------------------------")
​
    // 等值链接
    employeeDS.joinWith(departmentDS, $"depId" === $"id").show()
    // 按照年龄进行排序,并降序排列
    employeeDS.sort($"age".desc).show()
  }
}
case class Department(id: Long, name: String)
case class Employee(name: String, age: Long, depId: Long, gender: String, salary: Double)

函数的使用

    日期函数:

        current_time():获取当前日期。

        current_timestamp():获取当前时间戳。

    数学函数

        rand():生成0~1之间的随机数

        round(e: column,scale: Int ):column列名,scala精确到小数点的位数。

        round(e: column):一个参数默认精确到小数点1位。

    字符串函数

        concat_ws(seq: String, exprs: column*):字符串拼接。参数seq传入的拼接的字符,column传入的须要拼接的字符,能够指定多个列,不一样列之间用逗号隔开。

package spark2x
​
import org.apache.spark.sql.{DataFrame, Dataset, SparkSession}
​
/**
  * 类名  FunctionsDemo
  * 做者   彭三青
  * 建立时间  2018-11-29 15:56
  * 版本  1.0
  * 描述: $
  */
​
object FunctionsDemo {
  def main(args: Array[String]): Unit = {
    val spark = SparkSession.builder()
      .master("local[2]")
      .appName("Operations")
      .getOrCreate()
    import spark.implicits._
    import org.apache.spark.sql.functions._
​
    val employeeDF: DataFrame = spark.read.json("E://temp/employee.json")
    val employeeDS: Dataset[Employee] = employeeDF.as[Employee]
​
    employeeDS
        .select(employeeDS("name"), current_date(), current_timestamp(),
          rand(), round(employeeDS("salary"), 2),// 取随机数,
          concat(employeeDS("gender"), employeeDS("age")),
          concat_ws("|", employeeDS("gender"), employeeDS("age"))).show()
​
    spark.stop()
  }
}
case class Employee(name: String, age: Long, depId: Long, gender: String, salary: Double)

    数据

        employee.json

{"name": "Leo", "age": 25, "depId": 1, "gender": "male", "salary": 20000.123}
{"name": "Marry", "age": 30, "depId": 2, "gender": "female", "salary": 25000}
{"name": "Jack", "age": 35, "depId": 1, "gender": "male", "salary": 15000}
{"name": "Tom", "age": 42, "depId": 3, "gender": "male", "salary": 18000}
{"name": "Kattie", "age": 21, "depId": 3, "gender": "female", "salary": 21000}
{"name": "Jen", "age": 30, "depId": 2, "gender": "female", "salary": 28000}
{"name": "Jen", "age": 19, "depId": 2, "gender": "male", "salary": 8000}
{"name": "Tom", "age": 42, "depId": 3, "gender": "male", "salary": 18000}
{"name": "XiaoFang", "age": 18, "depId": 3, "gender": "female", "salary": 58000}

        employee2.json

{"name": "Leo", "age": 25, "depId": 1, "gender": "male", "salary": 20000.123}
{"name": "Marry", "age": 30, "depId": 2, "gender": "female", "salary": 25000}
{"name": "Jack", "age": 35, "depId": 1, "gender": "male", "salary": 15000}
{"name": "Tom", "age": 42, "depId": 3, "gender": "male", "salary": 18000}
{"name": "Kattie", "age": 21, "depId": 3, "gender": "female", "salary": 21000}
{"name": "Jen", "age": 30, "depId": 2, "gender": "female", "salary": 28000}

        department.json

{"id": 1, "name": "Technical Department"}
{"id": 2, "name": "Financial Department"}
{"id": 3, "name": "HR Department"}
相关文章
相关标签/搜索