Python爬取房产数据,在地图上展示!

小伙伴,我又来了,此次咱们写的是用python爬虫爬取乌鲁木齐的房产数据并展现在地图上,地图工具我用的是 BDP我的版-免费在线数据分析软件,数据可视化软件 ,这个能够导入csv或者excel数据。javascript

  • 首先仍是分析思路,爬取网站数据,获取小区名称,地址,价格,经纬度,保存在excel里。再把excel数据上传到BDP网站,生成地图报表

本次我使用的是scrapy框架,可能有点大材小用了,主要是刚学完用这个练练手,再写代码前我仍是建议你们先分析网站,分析好数据,再去动手写代码,由于好的分析能够事半功倍,乌鲁木齐楼盘,2017乌鲁木齐新楼盘,乌鲁木齐楼盘信息 - 乌鲁木齐吉屋网 这个网站的数据比较全,每一页获取房产的LIST信息,而且翻页,点进去是详情页,获取房产的详细信息(包含名称,地址,房价,经纬度),再用pipelines保存item到excel里,最后在bdp生成地图报表,废话很少说上代码:html

JiwuspiderSpider.pyjava

# -*- coding: utf-8 -*- 
from scrapy import Spider,Request import re from jiwu.items import JiwuItem class JiwuspiderSpider(Spider): name = "jiwuspider" allowed_domains = ["wlmq.jiwu.com"] start_urls = ['http://wlmq.jiwu.com/loupan'] def parse(self, response): """ 解析每一页房屋的list :param response: :return: """ 
        for url in response.xpath('//a[@class="index_scale"]/@href').extract(): yield Request(url,self.parse_html)  # 取list集合中的url 调用详情解析方法 
 
        # 若是下一页属性还存在,则把下一页的url获取出来 
        nextpage = response.xpath('//a[@class="tg-rownum-next index-icon"]/@href').extract_first() #判断是否为空 
        if nextpage: yield Request(nextpage,self.parse)  #回调本身继续解析 
 
 
 
    def parse_html(self,response): """ 解析每个房产信息的详情页面,生成item :param response: :return: """ pattern = re.compile('<script type="text/javascript">.*?lng = \'(.*?)\';.*?lat = \'(.*?)\';.*?bname = \'(.*?)\';.*?' 
                             'address = \'(.*?)\';.*?price = \'(.*?)\';',re.S) item = JiwuItem() results = re.findall(pattern,response.text) for result in results: item['name'] = result[2] item['address'] = result[3] # 对价格判断只取数字,若是为空就设置为0 
            pricestr =result[4] pattern2 = re.compile('(\d+)') s = re.findall(pattern2,pricestr) if len(s) == 0: item['price'] = 0 else:item['price'] = s[0] item['lng'] = result[0] item['lat'] = result[1] yield item

item.pypython

# -*- coding: utf-8 -*- 
 
# Define here the models for your scraped items  #  # See documentation in:  # http://doc.scrapy.org/en/latest/topics/items.html 
 
import scrapy class JiwuItem(scrapy.Item): # define the fields for your item here like: 
    name = scrapy.Field() price =scrapy.Field() address =scrapy.Field() lng = scrapy.Field() lat = scrapy.Field() pass

pipelines.py 注意此处是吧mongodb的保存方法注释了,能够自选选择保存方式mongodb

# -*- coding: utf-8 -*- 
 
# Define your item pipelines here  #  # Don't forget to add your pipeline to the ITEM_PIPELINES setting  # See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html 
import pymongo from scrapy.conf import settings from openpyxl import workbook class JiwuPipeline(object): wb = workbook.Workbook() ws = wb.active ws.append(['小区名称', '地址', '价格', '经度', '纬度']) def __init__(self): # 获取数据库链接信息 
        host = settings['MONGODB_URL'] port = settings['MONGODB_PORT'] dbname = settings['MONGODB_DBNAME'] client = pymongo.MongoClient(host=host, port=port) # 定义数据库 
        db = client[dbname] self.table = db[settings['MONGODB_TABLE']] def process_item(self, item, spider): jiwu = dict(item) #self.table.insert(jiwu) 
        line = [item['name'], item['address'], str(item['price']), item['lng'], item['lat']] self.ws.append(line) self.wb.save('jiwu.xlsx') return item

最后报表的数据数据库

mongodb数据库app

 

原文出处:https://www.cnblogs.com/duaimili/p/10255959.htmlpython爬虫

相关文章
相关标签/搜索