今天是大年初二,在开始咱们今天的学习以前,我要先和你道一声春节快乐!算法
在第 16和第 34篇文章中,我分别和你介绍了 sort buffer、内存临时表和 join buffer。这三个数据结构都是用来存放语句执行过程当中的中间数据,以辅助 SQL 语句的执行的。其
中,咱们在排序的时候用到了 sort buffer,在使用 join 语句的时候用到了 join buffer。sql
而后,你可能会有这样的疑问,MySQL 何时会使用内部临时表呢?数组
今天这篇文章,我就先给你举两个须要用到内部临时表的例子,来看看内部临时表是怎么工做的。而后,咱们再来分析,什么状况下会使用内部临时表。bash
为了便于量化分析,我用下面的表 t1 来举例。数据结构
create table t1(id int primary key, a int, b int, index(a)); delimiter ;; create procedure idata() begin declare i int; set i=1; while(i<=1000)do insert into t1 values(i, i, i); set i=i+1; end while; end;; delimiter ; call idata();
而后,咱们执行下面这条语句:学习
(select 1000 as f) union (select id from t1 order by id desc limit 2);
这条语句用到了 union,它的语义是,取这两个子查询结果的并集。并集的意思就是这两个集合加起来,重复的行只保留一行。优化
下图是这个语句的 explain 结果。spa
图 1 union 语句 explain 结果线程
能够看到:3d
这个语句的执行流程是这样的:
1. 建立一个内存临时表,这个临时表只有一个整型字段 f,而且 f 是主键字段。
2. 执行第一个子查询,获得 1000 这个值,并存入临时表中。
3. 执行第二个子查询:
4. 从临时表中按行取出数据,返回结果,并删除临时表,结果中包含两行数据分别是1000 和 999。
这个过程的流程图以下所示:
图 2 union 执行流程
能够看到,这里的内存临时表起到了暂存数据的做用,并且计算过程还用上了临时表主键id 的惟一性约束,实现了 union 的语义。
顺便提一下,若是把上面这个语句中的 union 改为 union all 的话,就没有了“去重”的语义。这样执行的时候,就依次执行子查询,获得的结果直接做为结果集的一部分,发给
客户端。所以也就不须要临时表了。
图 3 union all 的 explain 结果
能够看到,第二行的 Extra 字段显示的是 Using index,表示只使用了覆盖索引,没有用临时表了。
另一个常见的使用临时表的例子是 group by,咱们来看一下这个语句:
select id%10 as m, count(*) as c from t1 group by m;
这个语句的逻辑是把表 t1 里的数据,按照 id%10 进行分组统计,并按照 m 的结果排序后输出。它的 explain 结果以下:
图 4 group by 的 explain 结果
在 Extra 字段里面,咱们能够看到三个信息:
Using index,表示这个语句使用了覆盖索引,选择了索引 a,不须要回表;
Using temporary,表示使用了临时表;
Using filesort,表示须要排序。
这个语句的执行流程是这样的:
1. 建立内存临时表,表里有两个字段 m 和 c,主键是 m;
2. 扫描表 t1 的索引 a,依次取出叶子节点上的 id 值,计算 id%10 的结果,记为 x;
若是临时表中没有主键为 x 的行,就插入一个记录 (x,1);
若是表中有主键为 x 的行,就将 x 这一行的 c 值加 1;
3. 遍历完成后,再根据字段 m 作排序,获得结果集返回给客户端。
这个流程的执行图以下:
图 5 group by 执行流程
图中最后一步,对内存临时表的排序,在第 17 篇文章中已经有过介绍,我把图贴过来,方便你回顾。
图 6 内存临时表排序流程
其中,临时表的排序过程就是图 6 中虚线框内的过程。
接下来,咱们再看一下这条语句的执行结果:
图 7 group by 执行结果
若是你的需求并不须要对结果进行排序,那你能够在 SQL 语句末尾增长 order by null,也就是改为:
select id%10 as m, count(*) as c from t1 group by m order by null;
这样就跳过了最后排序的阶段,直接从临时表中取数据返回。返回的结果如图 8 所示。
图 8 group + order by null 的结果(内存临时表)
因为表 t1 中的 id 值是从 1 开始的,所以返回的结果集中第一行是 id=1;扫描到 id=10的时候才插入 m=0 这一行,所以结果集里最后一行才是 m=0。
这个例子里因为临时表只有 10 行,内存能够放得下,所以全程只使用了内存临时表。可是,内存临时表的大小是有限制的,参数 tmp_table_size 就是控制这个内存大小的,默认是 16M。
若是我执行下面这个语句序列:
set tmp_table_size=1024; select id%100 as m, count(*) as c from t1 group by m order by null limit 10;
把内存临时表的大小限制为最大 1024 字节,并把语句改为 id % 100,这样返回结果里有100 行数据。可是,这时的内存临时表大小不够存下这 100 行数据,也就是说,执行过程
中会发现内存临时表大小到达了上限(1024 字节)。
那么,这时候就会把内存临时表转成磁盘临时表,磁盘临时表默认使用的引擎是InnoDB。 这时,返回的结果如图 9 所示。
图 9 group + order by null 的结果(磁盘临时表)
若是这个表 t1 的数据量很大,极可能这个查询须要的磁盘临时表就会占用大量的磁盘空间。
能够看到,不管是使用内存临时表仍是磁盘临时表,group by 逻辑都须要构造一个带惟一索引的表,执行代价都是比较高的。若是表的数据量比较大,上面这个 group by 语句
执行起来就会很慢,咱们有什么优化的方法呢?
要解决 group by 语句的优化问题,你能够先想一下这个问题:执行 group by 语句为何须要临时表?
group by 的语义逻辑,是统计不一样的值出现的个数。可是,因为每一行的 id%100 的结果是无序的,因此咱们就须要有一个临时表,来记录并统计结果。
那么,若是扫描过程当中能够保证出现的数据是有序的,是否是就简单了呢?
假设,如今有一个相似图 10 的这么一个数据结构,咱们来看看 group by 能够怎么作。
图 10 group by 算法优化 - 有序输入
能够看到,若是能够确保输入的数据是有序的,那么计算 group by 的时候,就只须要从左到右,顺序扫描,依次累加。也就是下面这个过程:
按照这个逻辑执行的话,扫描到整个输入的数据结束,就能够拿到 group by 的结果,不须要临时表,也不须要再额外排序
你必定想到了,InnoDB 的索引,就能够知足这个输入有序的条件。
在 MySQL 5.7 版本支持了 generated column 机制,用来实现列数据的关联更新。你能够用下面的方法建立一个列 z,而后在 z 列上建立一个索引(若是是 MySQL 5.6 及以前的
版本,你也能够建立普通列和索引,来解决这个问题)。
alter table t1 add column z int generated always as(id % 100), add index(z);
这样,索引 z 上的数据就是相似图 10 这样有序的了。上面的 group by 语句就能够改为:
select z, count(*) as c from t1 group by z;
优化后的 group by 语句的 explain 结果,以下图所示:
图 11 group by 优化的 explain 结果
从 Extra 字段能够看到,这个语句的执行再也不须要临时表,也不须要排序了。
因此,若是能够经过加索引来完成 group by 逻辑就再好不过了。可是,若是碰上不适合建立索引的场景,咱们仍是要老老实实作排序的。那么,这时候的 group by 要怎么优化呢?
若是咱们明明知道,一个 group by 语句中须要放到临时表上的数据量特别大,却仍是要按照“先放到内存临时表,插入一部分数据后,发现内存临时表不够用了再转成磁盘临时
表”,看上去就有点儿傻。
那么,咱们就会想了,MySQL 有没有让咱们直接走磁盘临时表的方法呢?
答案是,有的。
在 group by 语句中加入 SQL_BIG_RESULT 这个提示(hint),就能够告诉优化器:这个语句涉及的数据量很大,请直接用磁盘临时表。
MySQL 的优化器一看,磁盘临时表是 B+ 树存储,存储效率不如数组来得高。因此,既然你告诉我数据量很大,那从磁盘空间考虑,仍是直接用数组来存吧。
所以,下面这个语句
select SQL_BIG_RESULT id%100 as m, count(*) as c from t1 group by m;
的执行流程就是这样的:
1. 初始化 sort_buffer,肯定放入一个整型字段,记为 m;
2. 扫描表 t1 的索引 a,依次取出里面的 id 值, 将 id%100 的值存入 sort_buffer 中;
3. 扫描完成后,对 sort_buffer 的字段 m 作排序(若是 sort_buffer 内存不够用,就会利用磁盘临时文件辅助排序);
4. 排序完成后,就获得了一个有序数组。
根据有序数组,获得数组里面的不一样值,以及每一个值的出现次数。这一步的逻辑,你已经从前面的图 10 中了解过了。
下面两张图分别是执行流程图和执行 explain 命令获得的结果。
图 12 使用 SQL_BIG_RESULT 的执行流程图
图 13 使用 SQL_BIG_RESULT 的 explain 结果
从 Extra 字段能够看到,这个语句的执行没有再使用临时表,而是直接用了排序算法。
基于上面的 union、union all 和 group by 语句的执行过程的分析,咱们来回答文章开头的问题:MySQL 何时会使用内部临时表?
1. 若是语句执行过程能够一边读数据,一边直接获得结果,是不须要额外内存的,不然就须要额外的内存,来保存中间结果;
2. join_buffer 是无序数组,sort_buffer 是有序数组,临时表是二维表结构;
3. 若是执行逻辑须要用到二维表特性,就会优先考虑使用临时表。好比咱们的例子中,union 须要用到惟一索引约束, group by 还须要用到另一个字段来存累积计数。
经过今天这篇文章,我重点和你讲了 group by 的几种实现算法,从中能够总结一些使用的指导原则:
1. 若是对 group by 语句的结果没有排序要求,要在语句后面加 order by null;
2. 尽可能让 group by 过程用上表的索引,确认方法是 explain 结果里没有 Usingtemporary 和 Using filesort;
3. 若是 group by 须要统计的数据量不大,尽可能只使用内存临时表;也能够经过适当调大tmp_table_size 参数,来避免用到磁盘临时表;
4. 若是数据量实在太大,使用 SQL_BIG_RESULT 这个提示,来告诉优化器直接使用排序算法获得 group by 的结果。
最后,我给你留下一个思考题吧。
文章中图 8 和图 9 都是 order by null,为何图 8 的返回结果里面,0 是在结果集的最后一行,而图 9 的结果里面,0 是在结果集的第一行?
你能够把你的分析写在留言区里,我会在下一篇文章和你讨论这个问题。感谢你的收听,也欢迎你把这篇文章分享给更多的朋友一块儿阅读。
上期的问题是:为何不能用 rename 修改临时表的更名。
在实现上,执行 rename table 语句的时候,要求按照“库名 / 表名.frm”的规则去磁盘找文件,可是临时表在磁盘上的 frm 文件是放在 tmpdir 目录下的,而且文件名的规则
是“#sql{进程 id}_{线程 id}_ 序列号.frm”,所以会报“找不到文件名”的错误。
@poppy 同窗,经过执行语句的报错现象推测了这个实现过程。