数据库-索引

mysql六:索引原理与慢查询优化

 

一 介绍

为什么要有索引?html

通常的应用系统,读写比例在10:1左右,并且插入操做和通常的更新操做不多出现性能问题,在生产环境中,咱们遇到最多的,也是最容易出问题的,仍是一些复杂的查询操做,所以对查询语句的优化显然是重中之重。提及加速查询,就不得不提到索引了。mysql

什么是索引?web

索引在MySQL中也叫作“键”,是存储引擎用于快速找到记录的一种数据结构。索引对于良好的性能
很是关键,尤为是当表中的数据量愈来愈大时,索引对于性能的影响愈发重要。
索引优化应该是对查询性能优化最有效的手段了。索引可以轻易将查询性能提升好几个数量级。
索引至关于字典的音序表,若是要查某个字,若是不使用音序表,则须要从几百页中逐页去查。算法

复制代码
                      30

        10                          40

   5         15               35          66

1    6    11   19          21   39     55    100
复制代码

二 索引的原理

一 索引原理sql

索引的目的在于提升查询效率,与咱们查阅图书所用的目录是一个道理:先定位到章,而后定位到该章下的一个小节,而后找到页数。类似的例子还有:查字典,查火车车次,飞机航班等数据库

本质都是:经过不断地缩小想要获取数据的范围来筛选出最终想要的结果,同时把随机的事件变成顺序的事件,也就是说,有了这种索引机制,咱们能够老是用同一种查找方式来锁定数据。vim

数据库也是同样,但显然要复杂的多,由于不只面临着等值查询,还有范围查询(>、<、between、in)、模糊查询(like)、并集查询(or)等等。数据库应该选择怎么样的方式来应对全部的问题呢?咱们回想字典的例子,能不能把数据分红段,而后分段查询呢?最简单的若是1000条数据,1到100分红第一段,101到200分红第二段,201到300分红第三段......这样查第250条数据,只要找第三段就能够了,一会儿去除了90%的无效数据。但若是是1千万的记录呢,分红几段比较好?稍有算法基础的同窗会想到搜索树,其平均复杂度是lgN,具备不错的查询性能。但这里咱们忽略了一个关键的问题,复杂度模型是基于每次相同的操做成原本考虑的。而数据库实现比较复杂,一方面数据是保存在磁盘上的,另一方面为了提升性能,每次又能够把部分数据读入内存来计算,由于咱们知道访问磁盘的成本大概是访问内存的十万倍左右,因此简单的搜索树难以知足复杂的应用场景。性能优化

二 磁盘IO与预读服务器

前面提到了访问磁盘,那么这里先简单介绍一下磁盘IO和预读,磁盘读取数据靠的是机械运动,每次读取数据花费的时间能够分为寻道时间、旋转延迟、传输时间三个部分,寻道时间指的是磁臂移动到指定磁道所须要的时间,主流磁盘通常在5ms如下;旋转延迟就是咱们常常据说的磁盘转速,好比一个磁盘7200转,表示每分钟能转7200次,也就是说1秒钟能转120次,旋转延迟就是1/120/2 = 4.17ms;传输时间指的是从磁盘读出或将数据写入磁盘的时间,通常在零点几毫秒,相对于前两个时间能够忽略不计。那么访问一次磁盘的时间,即一次磁盘IO的时间约等于5+4.17 = 9ms左右,听起来还挺不错的,但要知道一台500 -MIPS(Million Instructions Per Second)的机器每秒能够执行5亿条指令,由于指令依靠的是电的性质,换句话说执行一次IO的时间能够执行约450万条指令,数据库动辄十万百万乃至千万级数据,每次9毫秒的时间,显然是个灾难。下图是计算机硬件延迟的对比图,供你们参考:

 

考虑到磁盘IO是很是高昂的操做,计算机操做系统作了一些优化,当一次IO时,不光把当前磁盘地址的数据,而是把相邻的数据也都读取到内存缓冲区内,由于局部预读性原理告诉咱们,当计算机访问一个地址的数据的时候,与其相邻的数据也会很快被访问到。每一次IO读取的数据咱们称之为一页(page)。具体一页有多大数据跟操做系统有关,通常为4k或8k,也就是咱们读取一页内的数据时候,实际上才发生了一次IO,这个理论对于索引的数据结构设计很是有帮助。

三 索引的数据结构

前面讲了索引的基本原理,数据库的复杂性,又讲了操做系统的相关知识,目的就是让你们了解,任何一种数据结构都不是凭空产生的,必定会有它的背景和使用场景,咱们如今总结一下,咱们须要这种数据结构可以作些什么,其实很简单,那就是:每次查找数据时把磁盘IO次数控制在一个很小的数量级,最好是常数数量级。那么咱们就想到若是一个高度可控的多路搜索树是否能知足需求呢?就这样,b+树应运而生。

如上图,是一颗b+树,关于b+树的定义能够参见B+树,这里只说一些重点,浅蓝色的块咱们称之为一个磁盘块,能够看到每一个磁盘块包含几个数据项(深蓝色所示)和指针(黄色所示),如磁盘块1包含数据项17和35,包含指针P一、P二、P3,P1表示小于17的磁盘块,P2表示在17和35之间的磁盘块,P3表示大于35的磁盘块。真实的数据存在于叶子节点即三、五、九、十、1三、1五、2八、2九、3六、60、7五、7九、90、99。非叶子节点只不存储真实的数据,只存储指引搜索方向的数据项,如1七、35并不真实存在于数据表中。

###b+树的查找过程
如图所示,若是要查找数据项29,那么首先会把磁盘块1由磁盘加载到内存,此时发生一次IO,在内存中用二分查找肯定29在17和35之间,锁定磁盘块1的P2指针,内存时间由于很是短(相比磁盘的IO)能够忽略不计,经过磁盘块1的P2指针的磁盘地址把磁盘块3由磁盘加载到内存,发生第二次IO,29在26和30之间,锁定磁盘块3的P2指针,经过指针加载磁盘块8到内存,发生第三次IO,同时内存中作二分查找找到29,结束查询,总计三次IO。真实的状况是,3层的b+树能够表示上百万的数据,若是上百万的数据查找只须要三次IO,性能提升将是巨大的,若是没有索引,每一个数据项都要发生一次IO,那么总共须要百万次的IO,显然成本很是很是高。

###b+树性质
1.索引字段要尽可能的小:经过上面的分析,咱们知道IO次数取决于b+数的高度h,假设当前数据表的数据为N,每一个磁盘块的数据项的数量是m,则有h=㏒(m+1)N,当数据量N必定的状况下,m越大,h越小;而m = 磁盘块的大小 / 数据项的大小,磁盘块的大小也就是一个数据页的大小,是固定的,若是数据项占的空间越小,数据项的数量越多,树的高度越低。这就是为何每一个数据项,即索引字段要尽可能的小,好比int占4字节,要比bigint8字节少一半。这也是为何b+树要求把真实的数据放到叶子节点而不是内层节点,一旦放到内层节点,磁盘块的数据项会大幅度降低,致使树增高。当数据项等于1时将会退化成线性表。
2.索引的最左匹配特性:当b+树的数据项是复合的数据结构,好比(name,age,sex)的时候,b+数是按照从左到右的顺序来创建搜索树的,好比当(张三,20,F)这样的数据来检索的时候,b+树会优先比较name来肯定下一步的所搜方向,若是name相同再依次比较age和sex,最后获得检索的数据;但当(20,F)这样的没有name的数据来的时候,b+树就不知道下一步该查哪一个节点,由于创建搜索树的时候name就是第一个比较因子,必需要先根据name来搜索才能知道下一步去哪里查询。好比当(张三,F)这样的数据来检索时,b+树能够用name来指定搜索方向,但下一个字段age的缺失,因此只能把名字等于张三的数据都找到,而后再匹配性别是F的数据了, 这个是很是重要的性质,即索引的最左匹配特性。

三 MySQL索引管理

一 功能

#1. 索引的功能就是加速查找
#2. mysql中的primary key,unique,联合惟一也都是索引,这些索引除了加速查找之外,还有约束的功能

二 MySQL的索引分类

复制代码
普通索引INDEX:加速查找

惟一索引:
    -主键索引PRIMARY KEY:加速查找+约束(不为空、不能重复)
    -惟一索引UNIQUE:加速查找+约束(不能重复)

联合索引:
    -PRIMARY KEY(id,name):联合主键索引
    -UNIQUE(id,name):联合惟一索引
    -INDEX(id,name):联合普通索引
复制代码
举个例子来讲,好比你在为某商场作一个会员卡的系统。

这个系统有一个会员表
有下列字段:
会员编号 INT
会员姓名 VARCHAR(10)
会员身份证号码 VARCHAR(18)
会员电话 VARCHAR(10)
会员住址 VARCHAR(50)
会员备注信息 TEXT

那么这个 会员编号,做为主键,使用 PRIMARY
会员姓名 若是要建索引的话,那么就是普通的 INDEX
会员身份证号码 若是要建索引的话,那么能够选择 UNIQUE (惟一的,不容许重复)

#除此以外还有全文索引,即FULLTEXT
会员备注信息 , 若是须要建索引的话,能够选择全文搜索。
用于搜索很长一篇文章的时候,效果最好。
用在比较短的文本,若是就一两行字的,普通的 INDEX 也能够。
但其实对于全文搜索,咱们并不会使用MySQL自带的该索引,而是会选择第三方软件如Sphinx,专门来作全文搜索。

#其余的如空间索引SPATIAL,了解便可,几乎不用
各个索引的应用场景

三 索引的两大类型hash与btree

复制代码
#咱们能够在建立上述索引的时候,为其指定索引类型,分两类
hash类型的索引:查询单条快,范围查询慢
btree类型的索引:b+树,层数越多,数据量指数级增加(咱们就用它,由于innodb默认支持它)

#不一样的存储引擎支持的索引类型也不同
InnoDB 支持事务,支持行级别锁定,支持 B-tree、Full-text 等索引,不支持 Hash 索引;
MyISAM 不支持事务,支持表级别锁定,支持 B-tree、Full-text 等索引,不支持 Hash 索引;
Memory 不支持事务,支持表级别锁定,支持 B-tree、Hash 等索引,不支持 Full-text 索引;
NDB 支持事务,支持行级别锁定,支持 Hash 索引,不支持 B-tree、Full-text 等索引;
Archive 不支持事务,支持表级别锁定,不支持 B-tree、Hash、Full-text 等索引;
        
复制代码

四 建立/删除索引的语法

复制代码
#方法一:建立表时
      CREATE TABLE 表名 (
                字段名1  数据类型 [完整性约束条件…],
                字段名2  数据类型 [完整性约束条件…],
                [UNIQUE | FULLTEXT | SPATIAL ]   INDEX | KEY
                [索引名]  (字段名[(长度)]  [ASC |DESC]) 
                );


#方法二:CREATE在已存在的表上建立索引
        CREATE  [UNIQUE | FULLTEXT | SPATIAL ]  INDEX  索引名 
                     ON 表名 (字段名[(长度)]  [ASC |DESC]) ;


#方法三:ALTER TABLE在已存在的表上建立索引
        ALTER TABLE 表名 ADD  [UNIQUE | FULLTEXT | SPATIAL ] INDEX
                             索引名 (字段名[(长度)]  [ASC |DESC]) ;
                             
#删除索引:DROP INDEX 索引名 ON 表名字;
复制代码

四 测试索引

1 准备

#1. 准备表
create table s1(
id int,
name varchar(20),
gender char(6),
email varchar(50)
);

#2. 建立存储过程,实现批量插入记录
delimiter $$ #声明存储过程的结束符号为$$
create procedure auto_insert1()
BEGIN
    declare i int default 1;
    while(i<3000000)do
        insert into s1 values(i,concat('egon',i),'male',concat('egon',i,'@oldboy'));
        set i=i+1;
    end while;
END$$ #$$结束
delimiter ; #从新声明分号为结束符号

#3. 查看存储过程
show create procedure auto_insert1\G 

#4. 调用存储过程
call auto_insert1();
View Code

2 在没有索引的前提下测试查询速度

复制代码
#无索引:从头至尾扫描一遍,因此查询速度很慢
mysql> select * from s1 where id=333;
+------+---------+--------+----------------+
| id   | name    | gender | email          |
+------+---------+--------+----------------+
|  333 | egon333 | male   | 333@oldboy.com |
|  333 | egon333 | f      | alex333@oldboy |
|  333 | egon333 | f      | alex333@oldboy |
+------+---------+--------+----------------+
3 rows in set (0.32 sec)

mysql> select * from s1 where email='egon333@oldboy';
....
... rows in set (0.36 sec)
复制代码

3 加上索引

复制代码
#1. 必定是为搜索条件的字段建立索引,好比select * from t1 where age > 5;就须要为age加上索引

#2. 在表中已经有大量数据的状况下,建索引会很慢,且占用硬盘空间,插入删除更新都很慢,只有查询快
好比create index idx on s1(id);会扫描表中全部的数据,而后以id为数据项,建立索引结构,存放于硬盘的表中。
建完之后,再查询就会很快了

#3. 须要注意的是:innodb表的索引会存放于s1.ibd文件中,而myisam表的索引则会有单独的索引文件table1.MYI
复制代码

ps:咱们能够去mysql的data目录下找到该表,能够看到占用的硬盘空间多了

五 正确使用索引

一 并非说咱们建立了索引就必定会加快查询速度,以下索引未命中

select sql_no_cache * from s1 where email='xxx'; #命中索引,速度很快
select sql_no_cache * from s1 where email like '%old%'; #没法使用索引,速度依然很慢

二 覆盖索引与索引合并

复制代码
#覆盖索引:
    - 在索引文件中直接获取数据
    http://blog.itpub.net/22664653/viewspace-774667/

#分析
select * from s1 where id=123;
该sql命中了索引,但未覆盖索引。
利用id=123到索引的数据结构中定位到该id在硬盘中的位置,或者说再数据表中的位置。
可是咱们select的字段为*,除了id之外还须要其余字段,这就意味着,咱们经过索引结构取到id还不够,还须要利用该id再去找到该id所在行的其余字段值,这是须要时间的,很明显,若是咱们只select id,就减去了这份苦恼,以下
select id from s1 where id=123;
这条就是覆盖索引了,命中索引,且从索引的数据结构直接就取到了id在硬盘的地址,速度很快
复制代码

 

复制代码
#索引合并:把多个单列索引合并使用

#分析:
组合索引能作到的事情,咱们均可以用索引合并去解决,好比
create index ne on s1(name,email);#组合索引
咱们彻底能够单独为name和email建立索引

组合索引能够命中:
select * from s1 where name='egon' ;
select * from s1 where name='egon' and email='adf';

索引合并能够命中:
select * from s1 where name='egon' ;
select * from s1 where email='adf';
select * from s1 where name='egon' and email='adf';

乍一看好像索引合并更好了:能够命中更多的状况,但其实要分状况去看,若是是name='egon' and email='adf',那么组合索引的效率要高于索引合并,若是是单条件查,那么仍是用索引合并比较合理
复制代码

三 若想利用索引达到预想的提升查询速度的效果,咱们在添加索引时,必须遵循如下原则

复制代码
#1.最左前缀匹配原则,很是重要的原则,
create index ix_name_email on s1(name,email,)
- 最左前缀匹配:必须按照从左到右的顺序匹配
select * from s1 where name='egon'; #能够
select * from s1 where name='egon' and email='asdf'; #能够
select * from s1 where email='alex@oldboy.com'; #不能够
mysql会一直向右匹配直到遇到范围查询(>、<、between、like)就中止匹配,好比a = 1 and b = 2 and c > 3 and d = 4 若是创建(a,b,c,d)顺序的索引,d是用不到索引的,若是创建(a,b,d,c)的索引则均可以用到,a,b,d的顺序能够任意调整。

#2.=和in能够乱序,好比a = 1 and b = 2 and c = 3 创建(a,b,c)索引能够任意顺序,mysql的查询优化器会帮你优化成索引能够识别的形式

#3.尽可能选择区分度高的列做为索引,区分度的公式是count(distinct col)/count(*),表示字段不重复的比例,比例越大咱们扫描的记录数越少,惟一键的区分度是1,而一些状态、性别字段可能在大数据面前区分度就是0,那可能有人会问,这个比例有什么经验值吗?使用场景不一样,这个值也很难肯定,通常须要join的字段咱们都要求是0.1以上,即平均1条扫描10条记录

#4.索引列不能参与计算,保持列“干净”,好比from_unixtime(create_time) = ’2014-05-29’就不能使用到索引,缘由很简单,b+树中存的都是数据表中的字段值,但进行检索时,须要把全部元素都应用函数才能比较,显然成本太大。因此语句应该写成create_time = unix_timestamp(’2014-05-29’);
复制代码

最左前缀示范

复制代码
mysql> select * from s1 where id>3 and name='egon' and email='alex333@oldboy.com' and gender='male';
Empty set (0.39 sec)

mysql> create index idx on s1(id,name,email,gender); #未遵循最左前缀
Query OK, 0 rows affected (15.27 sec)
Records: 0  Duplicates: 0  Warnings: 0

mysql> select * from s1 where id>3 and name='egon' and email='alex333@oldboy.com' and gender='male';
Empty set (0.43 sec)


mysql> drop index idx on s1;
Query OK, 0 rows affected (0.16 sec)
Records: 0  Duplicates: 0  Warnings: 0

mysql> create index idx on s1(name,email,gender,id); #遵循最左前缀
Query OK, 0 rows affected (15.97 sec)
Records: 0  Duplicates: 0  Warnings: 0

mysql> select * from s1 where id>3 and name='egon' and email='alex333@oldboy.com' and gender='male';
Empty set (0.03 sec)
复制代码

索引没法命中的状况须要注意:

复制代码
- like '%xx'
    select * from tb1 where email like '%cn';
    
    
- 使用函数
    select * from tb1 where reverse(email) = 'wupeiqi';
    
    
- or
    select * from tb1 where nid = 1 or name = 'seven@live.com';
    
    
    特别的:当or条件中有未创建索引的列才失效,如下会走索引
            select * from tb1 where nid = 1 or name = 'seven';
            select * from tb1 where nid = 1 or name = 'seven@live.com' and email = 'alex'
            
            
- 类型不一致
    若是列是字符串类型,传入条件是必须用引号引发来,否则...
    select * from tb1 where email = 999;
    
普通索引的不等于不会走索引
- !=
    select * from tb1 where email != 'alex'
    
    特别的:若是是主键,则仍是会走索引
        select * from tb1 where nid != 123
- >
    select * from tb1 where email > 'alex'
    
    
    特别的:若是是主键或索引是整数类型,则仍是会走索引
        select * from tb1 where nid > 123
        select * from tb1 where num > 123
        
        
#排序条件为索引,则select字段必须也是索引字段,不然没法命中
- order by
    select name from s1 order by email desc;
    当根据索引排序时候,select查询的字段若是不是索引,则不走索引
    select email from s1 order by email desc;
    特别的:若是对主键排序,则仍是走索引:
        select * from tb1 order by nid desc;
 
- 组合索引最左前缀
    若是组合索引为:(name,email)
    name and email       -- 使用索引
    name                 -- 使用索引
    email                -- 不使用索引


- count(1)或count(列)代替count(*)在mysql中没有差异了

- create index xxxx  on tb(title(19)) #text类型,必须制定长度
复制代码

其余注意事项

复制代码
- 避免使用select *
- count(1)或count(列) 代替 count(*)
- 建立表时尽可能时 char 代替 varchar
- 表的字段顺序固定长度的字段优先
- 组合索引代替多个单列索引(常用多个条件查询时)
- 尽可能使用短索引
- 使用链接(JOIN)来代替子查询(Sub-Queries)
- 连表时注意条件类型需一致
- 索引散列值(重复少)不适合建索引,例:性别不适合
复制代码

六 查询优化神器-explain

关于explain命令相信你们并不陌生,具体用法和字段含义能够参考官网explain-output,这里须要强调rows是核心指标,绝大部分rows小的语句执行必定很快(有例外,下面会讲到)。因此优化语句基本上都是在优化rows。

复制代码
执行计划:让mysql预估执行操做(通常正确)
    all < index < range < index_merge < ref_or_null < ref < eq_ref < system/const
    id,email
    
    慢:
        select * from userinfo3 where name='alex'
        
        explain select * from userinfo3 where name='alex'
        type: ALL(全表扫描)
            select * from userinfo3 limit 1;
    快:
        select * from userinfo3 where email='alex'
        type: const(走索引)
复制代码

http://blog.itpub.net/29773961/viewspace-1767044/

七 慢查询优化的基本步骤

复制代码
0.先运行看看是否真的很慢,注意设置SQL_NO_CACHE
1.where条件单表查,锁定最小返回记录表。这句话的意思是把查询语句的where都应用到表中返回的记录数最小的表开始查起,单表每一个字段分别查询,看哪一个字段的区分度最高
2.explain查看执行计划,是否与1预期一致(从锁定记录较少的表开始查询)
3.order by limit 形式的sql语句让排序的表优先查
4.了解业务方使用场景
5.加索引时参照建索引的几大原则
6.观察结果,不符合预期继续从0分析
复制代码

八 慢日志管理

复制代码
        慢日志
            - 执行时间 > 10
            - 未命中索引
            - 日志文件路径
            
        配置:
            - 内存
                show variables like '%query%';
                show variables like '%queries%';
                set global 变量名 = 值
            - 配置文件
                mysqld --defaults-file='E:\wupeiqi\mysql-5.7.16-winx64\mysql-5.7.16-winx64\my-default.ini'
                
                my.conf内容:
                    slow_query_log = ON
                    slow_query_log_file = D:/....
                    
                注意:修改配置文件以后,须要重启服务
复制代码
MySQL日志管理
========================================================
错误日志: 记录 MySQL 服务器启动、关闭及运行错误等信息
二进制日志: 又称binlog日志,以二进制文件的方式记录数据库中除 SELECT 之外的操做
查询日志: 记录查询的信息
慢查询日志: 记录执行时间超过指定时间的操做
中继日志: 备库将主库的二进制日志复制到本身的中继日志中,从而在本地进行重放
通用日志: 审计哪一个帐号、在哪一个时段、作了哪些事件
事务日志或称redo日志: 记录Innodb事务相关的如事务执行时间、检查点等
========================================================
1、bin-log
1. 启用
# vim /etc/my.cnf
[mysqld]
log-bin[=dir\[filename]]
# service mysqld restart
2. 暂停
//仅当前会话
SET SQL_LOG_BIN=0;
SET SQL_LOG_BIN=1;
3. 查看
查看所有:
# mysqlbinlog mysql.000002
按时间:
# mysqlbinlog mysql.000002 --start-datetime="2012-12-05 10:02:56"
# mysqlbinlog mysql.000002 --stop-datetime="2012-12-05 11:02:54"
# mysqlbinlog mysql.000002 --start-datetime="2012-12-05 10:02:56" --stop-datetime="2012-12-05 11:02:54" 

按字节数:
# mysqlbinlog mysql.000002 --start-position=260
# mysqlbinlog mysql.000002 --stop-position=260
# mysqlbinlog mysql.000002 --start-position=260 --stop-position=930
4. 截断bin-log(产生新的bin-log文件)
a. 重启mysql服务器
b. # mysql -uroot -p123 -e 'flush logs'
5. 删除bin-log文件
# mysql -uroot -p123 -e 'reset master' 


2、查询日志
启用通用查询日志
# vim /etc/my.cnf
[mysqld]
log[=dir\[filename]]
# service mysqld restart

3、慢查询日志
启用慢查询日志
# vim /etc/my.cnf
[mysqld]
log-slow-queries[=dir\[filename]]
long_query_time=n
# service mysqld restart
MySQL 5.6:
slow-query-log=1
slow-query-log-file=slow.log
long_query_time=3
查看慢查询日志
测试:BENCHMARK(count,expr)
SELECT BENCHMARK(50000000,2*3);
日志管理

九 参考博客

https://tech.meituan.com/mysql-index.html 

http://blog.itpub.net/29773961/viewspace-1767044/
http://www.cnblogs.com/wupeiqi/articles/5716963.html

http://www.cnblogs.com/hustcat/archive/2009/10/28/1591648.htmlhttp://www.cnblogs.com/mr-wid/archive/2013/05/09/3068229.htmlhttp://www.cnblogs.com/kissdodog/p/4159176.htmlhttp://blog.csdn.net/ggxxkkll/article/details/7551766http://blog.itpub.net/26435490/viewspace-1133659/http://pymysql.readthedocs.io/en/latest/user/examples.htmlhttp://www.cnblogs.com/lyhabc/p/3793524.htmlhttp://www.jianshu.com/p/ed32d69383d2http://doc.mysql.cn/mysql5/refman-5.1-zh.html-chapter/http://doc.mysql.cn/http://www.php100.com/html/webkaifa/database/Mysql/2013/0316/12223.htmlhttp://blog.csdn.net/ltylove2007/article/details/21084809http://lib.csdn.net/base/mysqlhttp://blog.csdn.net/c_enhui/article/details/9021271http://www.cnblogs.com/edisonchou/p/3878135.html?utm_source=tuicool&utm_medium=referralhttp://www.cnblogs.com/ggjucheng/archive/2012/11/11/2765465.htmlhttp://www.cnblogs.com/cchust/p/3444510.htmlhttp://www.docin.com/p-705091183.htmlhttp://www.open-open.com/doc/view/51f552745f514bbbaf0aaecf6c88509ahttp://www.open-open.com/doc/view/f80947a5c805458db8cf929834d241bfhttp://www.open-open.com/lib/view/open1435498096607.htmlhttp://www.open-open.com/doc/view/48c510607ab84fd8b87b158c3fe9d177http://www.open-open.com/lib/view/open1448032294072.htmlhttp://www.open-open.com/lib/view/open1404887901263.htmlhttp://www.cnblogs.com/cchust/p/3426927.htmlhttp://wribao.php230.com/category/news/1138254.htmlhttp://www.iqiyi.com/w_19rqqds1ut.htmlhttp://wenku.baidu.com/link?url=7Grxv0cQ_a00Ni2ZEU_cbDk2Wd2VTzlnS2UPKST3OF4oDqoLUQ2rQpOmK8ap12RDnXbnNs6gbY8DXVvWmo9bMxjWGS_vkhYus22ghAZYuEShttp://www.cnblogs.com/edisonchou/p/3878135.htmlhttp://blog.chinaunix.net/uid-540802-id-3419311.htmlhttp://my.oschina.net/scipio/blog/293052http://blog.itpub.net/29773961/viewspace-1767044/http://my.oschina.net/lionets/blog/407263

相关文章
相关标签/搜索