JavaShuo
栏目
标签
[论文解读]Feature-Guided Black-Box Safety Testing of Deep Neural Networks
时间 2021-01-02
标签
论文解读
繁體版
原文
原文链接
Feature-Guided Black-Box Safety Testing of Deep Neural Networks 深度神经网络的功能导向黑盒安全测试 总结: 一种使用蒙特卡洛树搜索的方式来获取反例的方法,使用SIFT提取关键点,并采用两个玩家回合制的方式对关键点进行操作. 文章目录 Feature-Guided Black-Box Safety Testing of Deep Neu
>>阅读原文<<
相关文章
1.
[论文解读] Concolic Testing for Deep Neural Networks
2.
论文阅读:Deep Neural Networks for Object Detection
3.
论文阅读《Knowledge Projection for Effective Design of Thinner and Faster Deep Neural Networks》
4.
Knowledge Projection for Effective Design of Thinner and Faster Deep Neural Networks论文初读
5.
【论文快读】Intriguing properties of neural networks(2014)
6.
MUNN:Mutation Analysis of neural networks论文阅读
7.
[deep compression] compressing deep neural networks 论文学习
8.
论文《On the Number of Linear Regions of Deep Neural Networks》翻译
9.
论文解析-《Understanding the difficulty of training deep feedforward neural networks》
10.
[论文解读]Towards Improved Testing For Deep Learning
更多相关文章...
•
C# 文本文件的读写
-
C#教程
•
*.hbm.xml映射文件详解
-
Hibernate教程
•
JDK13 GA发布:5大特性解读
•
Scala 中文乱码解决
相关标签/搜索
论文解读
networks
blackbox
safety
neural
testing
论文阅读
deep
CV论文阅读
论文
Spring教程
Thymeleaf 教程
MyBatis教程
文件系统
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
JDK JRE JVM,JDK卸载与安装
2.
Unity NavMeshComponents 学习小结
3.
Unity技术分享连载(64)|Shader Variant Collection|Material.SetPassFast
4.
为什么那么多人用“ji32k7au4a83”作密码?
5.
关于Vigenere爆0总结
6.
图论算法之最小生成树(Krim、Kruskal)
7.
最小生成树 简单入门
8.
POJ 3165 Traveling Trio 笔记
9.
你的快递最远去到哪里呢
10.
云徙探险中台赛道:借道云原生,寻找“最优路线”
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
[论文解读] Concolic Testing for Deep Neural Networks
2.
论文阅读:Deep Neural Networks for Object Detection
3.
论文阅读《Knowledge Projection for Effective Design of Thinner and Faster Deep Neural Networks》
4.
Knowledge Projection for Effective Design of Thinner and Faster Deep Neural Networks论文初读
5.
【论文快读】Intriguing properties of neural networks(2014)
6.
MUNN:Mutation Analysis of neural networks论文阅读
7.
[deep compression] compressing deep neural networks 论文学习
8.
论文《On the Number of Linear Regions of Deep Neural Networks》翻译
9.
论文解析-《Understanding the difficulty of training deep feedforward neural networks》
10.
[论文解读]Towards Improved Testing For Deep Learning
>>更多相关文章<<