JavaShuo
栏目
标签
LXMERT: Learning Cross-Modality Encoder Representations from Transformers 论文笔记
时间 2021-01-13
原文
原文链接
文章目录 1. 文章概要 2. 模型体系结构 2.1 Input Embeddings 2.2 编码器 2.3 输出表示 3. 预训练任务 3.1 Language Task: Masked Cross-Modality LM 3.2 Vision Task: Masked Object Prediction 3.3 跨模态任务 4. 实验结果 文章下载地址:. 1. 文章概要 视觉 - 语言推理
>>阅读原文<<
相关文章
1.
论文笔记BERT: Bidirectional Encoder Representations from Transformers
2.
从Transformers学习跨模态编码器表示《LXMERT: Learning Cross-Modality Encoder Representations from Transformers》
3.
论文笔记:SoundNet: Learning Sound Representations from Unlabeled Video
4.
论文笔记----DeepWalk: Online Learning of Social Representations
5.
论文笔记:DeepWalk: Online Learning of Social Representations
6.
【论文阅读笔记】Supervised Learning of Universal Sentence Representations from Natural Language Inference Da
7.
Machine Learning & Deep Learning 论文阅读笔记
8.
Deep Neural Networks for Learning Graph Representations论文笔记
9.
Learning Distributed Representations of Sentences from...
10.
[NLP论文阅读] Supervised Learning of Universal Sentence Representations from NLI data
更多相关文章...
•
ASP.NET Razor - 标记
-
ASP.NET 教程
•
CAP理论是什么?
-
NoSQL教程
•
Tomcat学习笔记(史上最全tomcat学习笔记)
•
Scala 中文乱码解决
相关标签/搜索
论文笔记
transformers
representations
encoder
learning
论文
论文阅读笔记
文笔
encoder+ffmpeg
笔记
MyBatis教程
PHP教程
MySQL教程
文件系统
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
【Java8新特性_尚硅谷】P1_P5
2.
SpringSecurity 基础应用
3.
SlowFast Networks for Video Recognition
4.
074-enable-right-click
5.
WindowFocusListener窗体焦点监听器
6.
DNS部署(二)DNS的解析(正向、反向、双向、邮件解析及域名转换)
7.
Java基础(十九)集合(1)集合中主要接口和实现类
8.
浏览器工作原理学习笔记
9.
chrome浏览器构架学习笔记
10.
eclipse引用sun.misc开头的类
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
论文笔记BERT: Bidirectional Encoder Representations from Transformers
2.
从Transformers学习跨模态编码器表示《LXMERT: Learning Cross-Modality Encoder Representations from Transformers》
3.
论文笔记:SoundNet: Learning Sound Representations from Unlabeled Video
4.
论文笔记----DeepWalk: Online Learning of Social Representations
5.
论文笔记:DeepWalk: Online Learning of Social Representations
6.
【论文阅读笔记】Supervised Learning of Universal Sentence Representations from Natural Language Inference Da
7.
Machine Learning & Deep Learning 论文阅读笔记
8.
Deep Neural Networks for Learning Graph Representations论文笔记
9.
Learning Distributed Representations of Sentences from...
10.
[NLP论文阅读] Supervised Learning of Universal Sentence Representations from NLI data
>>更多相关文章<<