from future import print_function
import cv2 as cv
import argparse
parser = argparse.ArgumentParser(description='This program shows how to use background subtraction methods provided by \
OpenCV. You can process both videos and images.')
parser.add_argument('--input', type=str, help='Path to a video or a sequence of image.', default='vtest.avi')
parser.add_argument('--algo', type=str, help='Background subtraction method (KNN, MOG2).', default='MOG2')
args = parser.parse_args()
if args.algo == 'MOG2':
backSub = cv.createBackgroundSubtractorMOG2()
else:
backSub = cv.createBackgroundSubtractorKNN()
capture = cv.VideoCapture(cv.samples.findFileOrKeep(args.input))
if not capture.isOpened:
print('Unable to open: ' + args.input)
exit(0)
while True:
ret, frame = capture.read()
if frame is None:
breakweb
fgMask = backSub.apply(frame) cv.rectangle(frame, (10, 2), (100,20), (255,255,255), -1) cv.putText(frame, str(capture.get(cv.CAP_PROP_POS_FRAMES)), (15, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5 , (0,0,0)) cv.imshow('Frame', frame) cv.imshow('FG Mask', fgMask) keyboard = cv.waitKey(30) if keyboard == 'q' or keyboard == 27: break
解释 咱们讨论上面代码的主要部分: * 一个cv::BackgroundSubtractor对象将用于生成前景掩码。在此示例中,使用了默认参数,可是也能够在create函数中声明特定的参数。 #建立背景分离对象
if args.algo == 'MOG2':
backSub = cv.createBackgroundSubtractorMOG2()
else:
backSub = cv.createBackgroundSubtractorKNN()app
* 一个cv::VideoCapture对象用于读取输入视频或输入图像序列。
capture = cv.VideoCapture(cv.samples.findFileOrKeep(args.input))
if not capture.isOpened:
print('Unable to open: ' + args.input)
exit(0)框架
* 每帧都用于计算前景掩码和更新背景。若是要更改用于更新背景模型的学习率,能够经过将参数传递给apply方法来设置特定的学习率。 #更新背景模型
fgMask = backSub.apply(frame)
* 当前帧号能够从cv::VideoCapture对象中提取,并标记在当前帧的左上角。白色矩形用于突出显示黑色的帧编号。 #获取帧号并将其写入当前帧
cv.rectangle(frame, (10, 2), (100,20), (255,255,255), -1) cv.putText(frame, str(capture.get(cv.CAP_PROP_POS_FRAMES)), (15, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5 , (0,0,0))
* 咱们准备显示当前的输入框和结果。 #展现当前帧和背景掩码
cv.imshow('Frame', frame) cv.imshow('FG Mask', fgMask)
**结果** 对于vtest.avi视频,适用如下框架:  MOG2方法的程序输出以下所示(检测到灰色区域有阴影):  对于KNN方法,程序的输出将以下所示(检测到灰色区域的阴影):  **参考** Background Models Challenge (BMC) website A Benchmark Dataset for Foreground/Background Extraction