arena: 多个pool聚合的结果
pool的大小默认值位4KB
arena的大小默认值256KB, 能放置 256/4=64 个pool
obmalloc.c
中代码
1
|
#define ARENA_SIZE (256 << 10) /* 256KB */
|
一个完整的arena = arena_object + pool集合
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
|
typedef
uchar
block
;
/* Record keeping for arenas. */
struct
arena_object
{
/* The address of the arena, as returned by malloc. Note that 0
* will never be returned by a successful malloc, and is used
* here to mark an arena_object that doesn't correspond to an
* allocated arena.
*/
uptr
address
;
/* Pool-aligned pointer to the next pool to be carved off. */
block*
pool_address
;
/* The number of available pools in the arena: free pools + never-
* allocated pools.
*/
uint
nfreepools
;
/* The total number of pools in the arena, whether or not available. */
uint
ntotalpools
;
/* Singly-linked list of available pools. */
// 单链表, 可用pool集合
struct
pool_header*
freepools
;
/* Whenever this arena_object is not associated with an allocated
* arena, the nextarena member is used to link all unassociated
* arena_objects in the singly-linked `unused_arena_objects` list.
* The prevarena member is unused in this case.
*
* When this arena_object is associated with an allocated arena
* with at least one available pool, both members are used in the
* doubly-linked `usable_arenas` list, which is maintained in
* increasing order of `nfreepools` values.
*
* Else this arena_object is associated with an allocated arena
* all of whose pools are in use. `nextarena` and `prevarena`
* are both meaningless in this case.
*/
// arena链表
struct
arena_object*
nextarena
;
struct
arena_object*
prevarena
;
}
;
|
arena_object的作用
1
2
3
|
1.
与其他
arena连接
,
组成双向链表
2.
维护
arena中可用的
pool
,
单链表
3.
其他信息
|
pool_header
与 arena_object
1
2
|
pool
_header和管理的
blocks内存是一块连续的内存
=
>
pool
_header被申请时
,
其管理的
block集合的内存一并被申请
arena
_object和其管理的内存是分离的
=
>
arena
_object被申请时
,
其管理的
pool集合的内存没有被申请
,
而是在某一时刻建立的联系
|
arena存在两种状态: 未使用(没有建立联系)/可用(建立了联系)
全局由两个链表维护着
1
2
3
4
5
6
7
8
9
10
11
|
/* The head of the singly-linked, NULL-terminated list of available
* arena_objects.
*/
// 单链表
static
struct
arena_object*
unused_arena_objects
=
NULL
;
/* The head of the doubly-linked, NULL-terminated at each end, list of
* arena_objects associated with arenas that have pools available.
*/
// 双向链表
static
struct
arena_object*
usable_arenas
=
NULL
;
|
首先, 来看下初始化相关的一些参数定义
代码obmalloc.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
|
/* Array of objects used to track chunks of memory (arenas). */
// arena_object 数组
static
struct
arena_object*
arenas
=
NULL
;
/* Number of slots currently allocated in the `arenas` vector. */
// 当前arenas中管理的arena_object的个数, 初始化时=0
static
uint
maxarenas
=
0
;
/* How many arena_objects do we initially allocate?
* 16 = can allocate 16 arenas = 16 * ARENA_SIZE = 4MB before growing the
* `arenas` vector.
*/
// 初始化时申请的arena_object个数
#define INITIAL_ARENA_OBJECTS 16
/* Number of arenas allocated that haven't been free()'d. */
static
size_t
narenas_currently_allocated
=
0
;
/* The head of the singly-linked, NULL-terminated list of available
* arena_objects.
*/
// 未使用状态arena的单链表
static
struct
arena_object*
unused_arena_objects
=
NULL
;
/* The head of the doubly-linked, NULL-terminated at each end, list of
* arena_objects associated with arenas that have pools available.
*/
// 可用状态arena的双向链表
static
struct
arena_object*
usable_arenas
=
NULL
;
|
然后, 看下obmalloc.c
中arena
初始化的代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
|
/* Allocate a new arena. If we run out of memory, return NULL. Else
* allocate a new arena, and return the address of an arena_object
* describing the new arena. It's expected that the caller will set
* `usable_arenas` to the return value.
*/
static
struct
arena_object*
new_arena
(
void
)
{
struct
arena_object*
arenaobj
;
uint
excess
;
/* number of bytes above pool alignment */
void
*
address
;
int
err
;
// 判断是否需要扩充"未使用"的arena_object列表
if
(
unused_arena_objects
==
NULL
)
{
uint
i
;
uint
numarenas
;
size_t
nbytes
;
/* Double the number of arena objects on each allocation.
* Note that it's possible for `numarenas` to overflow.
*/
// 确定需要申请的个数, 首次初始化, 16, 之后每次翻倍
numarenas
=
maxarenas
?
maxarenas
1
:
INITIAL_ARENA_OBJECTS
;
if
(
numarenas
maxarenas
)
return
NULL
;
/* overflow */
//溢出了
.
.
.
.
nbytes
=
numarenas *
sizeof
(
*
arenas
)
;
// 申请内存
arenaobj
=
(
struct
arena_object *
)
realloc
(
arenas
,
nbytes
)
;
if
(
arenaobj
==
NULL
)
return
NULL
;
arenas
=
arenaobj
;
/* We might need to fix pointers that were copied. However,
* new_arena only gets called when all the pages in the
* previous arenas are full. Thus, there are *no* pointers
* into the old array. Thus, we don't have to worry about
* invalid pointers. Just to be sure, some asserts:
*/
assert
(
usable_arenas
==
NULL
)
;
assert
(
unused_arena_objects
==
NULL
)
;
// 初始化
/* Put the new arenas on the unused_arena_objects list. */
for
(
i
=
maxarenas
;
i
numarenas
;
++
i
)
{
arenas
[
i
]
.
address
=
0
;
/* mark as unassociated */
// 新申请的一律为0, 标识着这个arena处于"未使用"
arenas
[
i
]
.
nextarena
=
i
numarenas
-
1
?
&
arenas
[
i
+
1
]
:
NULL
;
}
// 将其放入unused_arena_objects链表中
// unused_arena_objects 为新分配内存空间的开头
/* Update globals. */
unused_arena_objects
=
&
arenas
[
maxarenas
]
;
// 更新数量
maxarenas
=
numarenas
;
}
/* Take the next available arena object off the head of the list. */
assert
(
unused_arena_objects
!=
NULL
)
;
// 从unused_arena_objects中, 获取一个未使用的object
arenaobj
=
unused_arena_objects
;
unused_arena_objects
=
arenaobj
->
nextarena
;
// 更新链表
// 开始处理这个 arenaobject
assert
(
arenaobj
->
address
==
0
)
;
// 申请内存, 256KB, 内存地址赋值给arena的address. 这块内存可用
#ifdef ARENAS_USE_MMAP
address
=
mmap
(
NULL
,
ARENA_SIZE
,
PROT_READ
|
PROT_WRITE
,
MAP_PRIVATE
|
MAP_ANONYMOUS
,
-
1
,
0
)
;
err
=
(
address
==
MAP_FAILED
)
;
#else
address
=
malloc
(
ARENA_SIZE
)
;
err
=
(
address
==
0
)
;
#endif
if
(
err
)
{
/* The allocation failed: return NULL after putting the
* arenaobj back.
*/
arenaobj
->
nextarena
=
unused_arena_objects
;
unused_arena_objects
=
arenaobj
;
return
NULL
;
}
arenaobj
->
address
=
(
uptr
)
address
;
++
narenas_currently_allocated
;
// 设置pool集合相关信息
arenaobj
->
freepools
=
NULL
;
// 设置为NULL, 只有在释放一个pool的时候才有用
/* pool_address first pool-aligned address in the arena
nfreepools number of whole pools that fit after alignment */
arenaobj
->
pool_address
=
(
block*
)
arenaobj
->
address
;
arenaobj
->
nfreepools
=
ARENA_SIZE
/
POOL_SIZE
;
assert
(
POOL_SIZE *
arenaobj
->
nfreepools
==
ARENA_SIZE
)
;
// 将pool的起始地址调整为系统页的边界
// 申请到 256KB, 放弃了一些内存, 而将可使用的内存边界pool_address调整到了与系统页对齐
excess
=
(
uint
)
(
arenaobj
->
address
&
POOL_SIZE_MASK
)
;
if
(
excess
!=
0
)
{
--
arenaobj
->
nfreepools
;
arenaobj
->
pool_address
+=
POOL_SIZE
-
excess
;
}
arenaobj
->
ntotalpools
=
arenaobj
->
nfreepools
;
return
arenaobj
;
}
|
图示: 初始化arenas数组, 初始化后的所有arena都在unused_arena_objects
单链表里面
图示: 从arenas取一个arena进行初始化
此时
1
2
3
4
5
|
// 判断成立
if
(
unused_arena_objects
==
NULL
)
{
.
.
.
.
// 确定需要申请的个数, 首次初始化, 16, 之后每次翻倍
numarenas
=
maxarenas
?
maxarenas
<<
1
:
INITIAL_ARENA_OBJECTS
;
|
然后, 假设第一次分配了16个, 发现没有arena之后, 第二次处理结果: numarenas = 32
即, 数组扩大了一倍
new
了一个全新的 arena之后,
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
|
void
*
PyObject_Malloc
(
size_t
nbytes
)
{
// 刚开始没有可用的arena
if
(
usable_arenas
==
NULL
)
{
// new一个, 作为双向链表的表头
usable_arenas
=
new_arena
(
)
;
if
(
usable_arenas
==
NULL
)
{
UNLOCK
(
)
;
goto
redirect
;
}
usable_arenas
->
nextarena
=
usable_arenas
->
prevarena
=
NULL
;
}
.
.
.
.
.
.
.
// 从arena中获取一个pool
pool
=
(
poolp
)
usable_arenas
->
pool_address
;
assert
(
(
block*
)
pool
<=
(
block*
)
usable_arenas
->
address
+
ARENA_SIZE
-
POOL_SIZE
)
;
pool
->
arenaindex
=
usable_arenas
-
arenas
;
assert
(
&
arenas
[
pool
->
arenaindex
]
==
usable_arenas
)
;
pool
->
szidx
=
DUMMY_SIZE_IDX
;
// 更新 pool_address 向下一个节点
usable_arenas
->
pool_address
+=
POOL_SIZE
;
// 可用节点数量-1
--
usable_arenas
->
nfreepools
;
}
|
图示: 从全新的arena中获取一个pool
假设arena是旧的, 怎么分配的pool
1
2
|
pool
=
usable_arenas
->
freepools
;
if
(
pool
!=
NULL
)
{
|
这个arena->freepools
是何方神圣?
当arena中一整块pool被释放的时候
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
void
PyObject_Free
(
void
*
p
)
{
struct
arena_object*
ao
;
uint
nf
;
/* ao->nfreepools */
/* Link the pool to freepools. This is a singly-linked
* list, and pool->prevpool isn't used there.
*/
ao
=
&
arenas
[
pool
->
arenaindex
]
;
pool
->
nextpool
=
ao
->
freepools
;
ao
->
freepools
=
pool
;
nf
=
++
ao
->
nfreepools
;
|
也就是说, 在pool整块被释放的时候, 会将pool加入到arena->freepools
作为单链表的表头, 然后, 在从非全新arena中分配pool时, 优先从arena->freepools
里面取, 如果取不到, 再从arena内存块里面获取
图示
很自然, 从下一个arena中获取
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
|
void
*
PyObject_Malloc
(
size_t
nbytes
)
{
// 当发现用完了最后一个pool!!!!!!!!!!!
// nfreepools = 0
if
(
usable_arenas
->
nfreepools
==
0
)
{
assert
(
usable_arenas
->
nextarena
==
NULL
||
usable_arenas
->
nextarena
->
prevarena
==
usable_arenas
)
;
/* Unlink the arena: it is completely allocated. */
// 找到下一个节点!
usable_arenas
=
usable_arenas
->
nextarena
;
// 右下一个
if
(
usable_arenas
!=
NULL
)
{
usable_arenas
->
prevarena
=
NULL
;
// 更新下一个节点的prevarens
assert
(
usable_arenas
->
address
!=
0
)
;
}
// 没有下一个, 此时 usable_arenas = NULL, 下次进行内存分配的时候, 就会从arenas数组中取一个
}
}
|
注意: 这里有个逻辑, 就是每分配一个pool, 就检查是不是用到了最后一个, 如果是, 需要变更usable_arenas
到下一个可用的节点, 如果没有可用的, 那么下次进行内存分配的时候, 会判定从arenas数组中取一个
内存分配和回收最小单位是block, 当一个block被回收的时候, 可能触发pool被回收, pool被回收, 将会触发arena的回收机制
四种情况
1
2
3
4
|
1.
arena中所有
pool都是闲置的
(
empty
)
,
将
arena内存释放
,
返回给操作系统
2.
如果
arena中之前所有的
pool都是占用的
(
used
)
,
现在释放了一个
pool
(
empty
)
,
需要将
arena加入到
usable_arenas
,
会加入链表表头
3.
如果
arena中
empty的
pool个数
n
,
则从
useable
_arenas开始寻找可以插入的位置
.
将
arena插入
.
(
useable
_arenas是一个有序链表
,
按
empty
pool的个数
,
保证
empty
pool数量越多
,
被使用的几率越小
,
最终被整体释放的机会越大
)
4.
其他情况
,
不对
arena
进行处理
|
具体可以看PyObject_Free
的代码
好的, 到这里, 我们已经知道了block和pool的关系(包括pool怎么管理block的), 以及arena和pool的关系(怎么从arena中拉到可用的pool)
那么, 在分析PyObject_Malloc(size_t nbytes)
如何进行内存分配的时候, 我们就刨除掉这些管理代码
关注: 如何寻找得到一块可用的nbytes的block内存
其实代码那么多, 寻址得到对应的block也就这么几行代码, 其他代码都是pool没有, 找arena, 申请arena, arena没有, 找arenas, 最终的到一块pool, 初始化, 返回第一个block
如果有的情况, 用现成的
1
2
3
4
5
6
|
pool
=
usedpools
[
size
+
size
]
;
if
pool可用
:
pool
没满
,
取一个
block返回
pool
满了
,
从下一个
pool取一个
block返回
否则
:
获取
arena
,
从里面初始化一个
pool
,
拿到第一个
block
,
返回
|
从上面这个判断逻辑来看, 内存分配其实主要操作的是pool, 跟arena并不是基本的操作单元(只是用来管理pool的)
结论: 进行内存分配和销毁, 所有操作都是在pool上进行的
usedpools
是什么鬼? 其实是可用pool缓冲池, 后面说
取决于用户, Python提供的编译符号, 用于决定是否控制
obmalloc.c
1
2
3
4
5
6
7
8
9
|
#ifdef WITH_MEMORY_LIMITS
#ifndef SMALL_MEMORY_LIMIT
#define SMALL_MEMORY_LIMIT (64 * 1024 * 1024) /* 64 MB -- more? */
#endif
#endif
#ifdef WITH_MEMORY_LIMITS
#define MAX_ARENAS (SMALL_MEMORY_LIMIT / ARENA_SIZE)
#endif
|
具体使用中, python并不直接与arenas和arena打交道, 当Python申请内存时, 最基本的操作单元并不是arena, 而是pool
问题: pool中所有block的size一样, 但是在arena中, 每个pool的size都可能不一样, 那么最终这些pool是怎么维护的? 怎么根据大小找到需要的block所在的pool? => usedpools
1
2
3
4
5
6
|
1.
used状态
:
pool中至少有一个
block已经被使用
,
并且至少有一个
block未被使用
.
这种状态的
pool受控于
Python内部维护的
usedpool数组
2.
full状态
:
pool中所有的
block都已经被使用
,
这种状态的
pool在
arena中
,
但不在
arena的
freepools链表中
处于
full的
pool各自独立
,
不会被链表维护起来
3.
empty状态
:
pool中所有
block都未被使用
,
处于这个状态的
pool的集合通过其
pool
_header中的
nextpool构成一个链表
,
链表的表头是
arena
_object中的
freepools
|
usedpools数组: 维护着所有处于used状态的pool, 当申请内存的时候, 会通过usedpools寻找到一块可用的(处于used状态的)pool, 从中分配一个block
结构:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
|
#define SMALL_REQUEST_THRESHOLD 512
// 512/8 = 64
#define NB_SMALL_SIZE_CLASSES (SMALL_REQUEST_THRESHOLD / ALIGNMENT)
#define PTA(x) ((poolp )((uchar *)&(usedpools[2*(x)]) - 2*sizeof(block *)))
#define PT(x) PTA(x), PTA(x)
// 2 * ((64 + 7) / 8) * 8 = 128, 大小为128的数组
static
poolp
usedpools
[
2
*
(
(
NB_SMALL_SIZE_CLASSES
+
7
)
/
8
)
*
8
]
=
{
PT
(
0
)
,
PT
(
1
)
,
PT
(
2
)
,
PT
(
3
)
,
PT
(
4
)
,
PT
(
5
)
,
PT
(
6
)
,
PT
(
7
)
#if NB_SMALL_SIZE_CLASSES > 8
,
PT
(
8
)
,
PT
(
9
)
,
PT
(
10
)
,
PT
(
11
)
,
PT
(
12
)
,
PT
(
13
)
,
PT
(
14
)
,
PT
(
15
)
#if NB_SMALL_SIZE_CLASSES > 16
,
PT
(
16
)
,
PT
(
17
)
,
PT
(
18
)
,
PT
(
19
)
,
PT
(
20
)
,
PT
(
21
)
,
PT
(
22
)
,
PT
(
23
)
#if NB_SMALL_SIZE_CLASSES > 24
,
PT
(
24
)
,
PT
(
25
)
,
PT
(
26
)
,
PT
(
27
)
,
PT
(
28
)
,
PT
(
29
)
,
PT
(
30
)
,
PT
(
31
)
#if NB_SMALL_SIZE_CLASSES > 32
,
PT
(
32
)
,
PT
(
33
)
,
PT
(
34
)
,
PT
(
35
)
,
PT
(
36
)
,
PT
(
37
)
,
PT
(
38
)
,
PT
(
39
)
#if NB_SMALL_SIZE_CLASSES > 40
,
PT
(
40
)
,
PT
(
41
)
,
PT
(
42
)
,
PT
(
43
)
,
PT
(
44
)
,
PT
(
45
)
,
PT
(
46
)
,
PT
(
47
)
#if NB_SMALL_SIZE_CLASSES > 48
,
PT
(
48
)
,
PT
(
49
)
,
PT
(
50
)
,
PT
(
51
)
,
PT
(
52
)
,
PT
(
53
)
,
PT
(
54
)
,
PT
(
55
)
#if NB_SMALL_SIZE_CLASSES > 56
,
PT
(
56
)
,
PT
(
57
)
,
PT
(
58
)
,
PT
(
59
)
,
PT
(
60
)
,
PT
(
61
)
,
PT
(
62
)
,
PT
(
63
)
#if NB_SMALL_SIZE_CLASSES > 64
#error "NB_SMALL_SIZE_CLASSES should be less than 64"
#endif /* NB_SMALL_SIZE_CLASSES > 64 */
#endif /* NB_SMALL_SIZE_CLASSES > 56 */
#endif /* NB_SMALL_SIZE_CLASSES > 48 */
#endif /* NB_SMALL_SIZE_CLASSES > 40 */
#endif /* NB_SMALL_SIZE_CLASSES > 32 */
#endif /* NB_SMALL_SIZE_CLASSES > 24 */
#endif /* NB_SMALL_SIZE_CLASSES > 16 */
#endif /* NB_SMALL_SIZE_CLASSES > 8 */
}
;
即
// 得到usedpools数组
static
poolp
usedpools
[
128
]
=
{
PTA
(
0
)
,
PTA
(
0
)
,
PTA
(
1
)
,
PTA
(
1
)
,
PTA
(
2
)
,
PTA
(
2
)
,
PTA
(
3
)
,
PTA
(
3
)
,
.
.
.
.
PTA
(
63
)
,
PTA
(
63
)
}
|
解开看(obmalloc.c
)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
typedef
uchar
block
;
/* Pool for small blocks. */
struct
pool_header
{
union
{
block *
_padding
;
uint
count
;
}
ref
;
/* number of allocated blocks */
block *
freeblock
;
/* pool's free list head */
struct
pool_header *
nextpool
;
/* next pool of this size class */
struct
pool_header *
prevpool
;
/* previous pool "" */
uint
arenaindex
;
/* index into arenas of base adr */
uint
szidx
;
/* block size class index */
uint
nextoffset
;
/* bytes to virgin block */
uint
maxnextoffset
;
/* largest valid nextoffset */
}
;
typedef
struct
pool_header *
poolp
;
usedpools
[
0
]
=
PTA
(
0
)
=
(
(
poolp
)
(
(
uchar *
)
|
为了看懂这步的trick, 心好累>_
直接上图
init
获得的情况, 其实就是将刚刚从arena中获取的pool加入到 usedpools 对应的双向链表中, 然后初始化, 然后返回block
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
|
init_pool
:
/* Frontlink to used pools. */
// 1. 获取得到usedpools链表头
next
=
usedpools
[
size
+
size
]
;
/* == prev */
// 2. 将新的pool加入到双向链表
pool
->
nextpool
=
next
;
pool
->
prevpool
=
next
;
next
->
nextpool
=
pool
;
next
->
prevpool
=
pool
;
pool
->
ref
.
count
=
1
;
// 3. 后面的是具体pool和block的了
if
(
pool
->
szidx
==
size
)
{
/* Luckily, this pool last contained blocks
* of the same size class, so its header
* and free list are already initialized.
*/
bp
=
pool
->
freeblock
;
pool
->
freeblock
=
*
(
block *
*
)
bp
;
UNLOCK
(
)
;
return
(
void
*
)
bp
;
}
/*
* Initialize the pool header, set up the free list to
* contain just the second block, and return the first
* block.
*/
pool
->
szidx
=
size
;
size
=
INDEX2SIZE
(
size
)
;
bp
=
(
block *
)
pool
+
POOL_OVERHEAD
;
pool
->
nextoffset
=
POOL_OVERHEAD
+
(
size
maxnextoffset
=
POOL_SIZE
-
size
;
pool
->
freeblock
=
bp
+
size
;
*
(
block *
*
)
(
pool
->
freeblock
)
=
NULL
;
UNLOCK
(
)
;
return
(
void
*
)
bp
;
// here
}
|
从现有的pool, 其实就是 usedpools得到双向链表头部, 判断是不是空链表, 不是的话代表有可用的pool, 直接从里面获取
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
|
if
(
(
nbytes
-
1
)
>
ALIGNMENT_SHIFT
;
pool
=
usedpools
[
size
+
size
]
;
// 注意这里的判断, pool != pool-> nextpool 表示得到的链表不是空的
if
(
pool
!=
pool
->
nextpool
)
{
/*
* There is a used pool for this size class.
* Pick up the head block of its free list.
*/
++
pool
->
ref
.
count
;
bp
=
pool
->
freeblock
;
assert
(
bp
!=
NULL
)
;
if
(
(
pool
->
freeblock
=
*
(
block *
*
)
bp
)
!=
NULL
)
{
UNLOCK
(
)
;
return
(
void
*
)
bp
;
}
/*
* Reached the end of the free list, try to extend it.
*/
if
(
pool
->
nextoffset
maxnextoffset
)
{
/* There is room for another block. */
pool
->
freeblock
=
|