package apriori;java
import java.io.BufferedReader;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.TreeSet;数组
public class AprioriAlgorithm {
private int minSup; //最小支持度
private static List<String> data;
private static List<Set<String>> dataSet;
public static void main(String[] args){
long startTime = System.currentTimeMillis();
AprioriAlgorithm apriori = new AprioriAlgorithm();
//使用书中的测试集
data = apriori.buildData();
//设置最小支持度
apriori.setMinSup(2);
//构造数据集
data = apriori.buildData();
//构建频繁1项集
List<Set<String>> f1Set = apriori.findF1Item(data);
apriori.printSet(f1Set, 1);
List<Set<String>> result = f1Set;
int i = 2;
do{
result = apriori.aripriGen(result);
apriori.printSet(result, i);
i++;
}while(result.size() != 0);
long endTime = System.currentTimeMillis();
System.out.println("共用时:" +(endTime - startTime) + "ms");
}
public void setMinSup(int minSup){
this.minSup = minSup;
}
/**
* 构造原始数据集,能够为之提供参数
* 若是不提供参数,将按程序默认构造的数据集
* 若是提供参数为文件名,则使用文件中的数据集
*
*/
List<String> buildData(String...fileName){
List<String> data = new ArrayList<String>();
if(fileName.length != 0){
File file = new File(fileName[0]);
try{
BufferedReader reader = new BufferedReader(new FileReader(file));
String line;
while((line = reader.readLine()) != null){
data.add(line);
}
}catch(FileNotFoundException e){
e.printStackTrace();
}catch(IOException e){
e.printStackTrace();
}
}else{
data.add("I1 I2 I5");
data.add("I2 I4");
data.add("I2 I3");
data.add("I1 I2 I4");
data.add("I1 I3");
data.add("I2 I3");
data.add("I1 I3");
data.add("I1 I2 I3 I5");
data.add("I1 I2 I3");
}
dataSet = new ArrayList<Set<String>>();
Set<String> dSet;
for(String d:data){
dSet = new TreeSet<String>();
String[] dArr = d.split(" ");
for(String str:dArr){
dSet.add(str);
}
dataSet.add(dSet);
}
return data;
}
/**
* 找出候选1项集
* @param data
* @return result
*
*/
List<Set<String>> findF1Item(List<String> data){
List<Set<String>> result = new ArrayList<Set<String>>();
Map<String, Integer> dc = new HashMap<String,Integer>();
for(String d:data){
String[] items = d.split(" ");
for(String item:items){
if(dc.containsKey(item)){
dc.put(item, dc.get(item) + 1);
}else{
dc.put(item, 1);
}
}
}
Set<String> itemKeys = dc.keySet();
Set<String> tempKeys = new TreeSet<String>();
for(String str:itemKeys){
tempKeys.add(str);
}
for(String item:tempKeys){
if(dc.get(item) >= minSup){
Set<String> f1Set = new TreeSet<String>();
f1Set.add(item);
result.add(f1Set);
}
}
return result;
}
/*
* 利用arioriGen 方法由k - 1项集生成k项集
*
*/
List<Set<String>> aripriGen(List<Set<String>> preSet){
List<Set<String>> result = new ArrayList<Set<String>>();
int preSetSize = preSet.size();
for(int i = 0;i < preSetSize - 1;i++){
for(int j = i + 1;j < preSetSize;j++){
String[] strA1 = preSet.get(i).toArray(new String[0]);
String[] strA2 = preSet.get(j).toArray(new String[0]);
if(isCanLink(strA1,strA2)){
Set<String> set = new TreeSet<String>();
for(String str:strA1){
set.add(str);
}
set.add((String) strA2[strA2.length-1]);//链接成K项集
//判断K项集是否须要剪切掉,若是不须要被cut掉,则加入到k项集的列表中
if(!isNeedCut(preSet, set)) {
result.add(set);
}
}
}
}
return checkSupport(result);
}
List<Set<String>> checkSupport(List<Set<String> > setList){
List<Set<String>> result = new ArrayList<Set<String>>();
boolean flag = true;
int [] counter = new int[setList.size()];
for(int i = 0; i < setList.size(); i++){
for(Set<String> dSets : dataSet) {
if(setList.get(i).size() > dSets.size()){
flag = true;
}else{
for(String str : setList.get(i)){
if(!dSets.contains(str)){
flag = false;
break;
}
}
if(flag) {
counter[i] += 1;
} else{
flag = true;
}
}
}
}
for(int i = 0; i < setList.size(); i++){
if (counter[i] >= minSup) {
result.add(setList.get(i));
}
}
return result;
}
/**
* 判断两个项集可否执行链接操做
* @param s1
* @param s2
* @return
*/
boolean isCanLink(String [] s1, String[] s2){
boolean flag = true;
if(s1.length == s2.length) {
for(int i = 0; i < s1.length - 1; i ++){
if(!s1[i].equals(s2[i])){
flag = false;
break;
}
}
if(s1[s1.length - 1].equals(s2[s2.length - 1])){
flag = false;
}
}else{
flag = true;
}
return flag;
}
/**
* 判断set是否须要被cut
*
* @param setList
* @param set
* @return
*/
boolean isNeedCut(List<Set<String>> setList, Set<String> set) {//setList指频繁K-1项集,set指候选K项集
boolean flag = false;
List<Set<String>> subSets = getSubset(set);//得到K项集的全部k-1项集
for ( Set<String> subSet : subSets) {
//判断当前的k-1项集set是否在频繁k-1项集中出现,若是出现,则不须要cut
//若没有出现,则须要被cut
if( !isContained(setList, subSet)){
flag = true;
break;
}
}
return flag;
}
/**
* 功能:判断k项集的某k-1项集是否包含在频繁k-1项集列表中
*
* @param setList
* @param set
* @return
*/
boolean isContained(List<Set<String>> setList, Set<String> set){
boolean flag = false;
int position = 0;
for( Set<String> s : setList ) {
String [] sArr = s.toArray(new String[0]);
String [] setArr = set.toArray(new String[0]);
for(int i = 0; i < sArr.length; i++) {
if ( sArr[i].equals(setArr[i])){
//若是对应位置的元素相同,则position为当前位置的值
position = i;
} else{
break;
}
}
//若是position等于数组的长度,说明已经找到某个setList中的集合与
//set集合相同了,退出循环,返回包含
//不然,把position置为0进入下一个比较
if ( position == sArr.length - 1) {
flag = true;
break;
} else {
flag = false;
position = 0;
}
}
return flag;
}
/**
* 得到k项集的全部k-1项子集
*
* @param set
* @return
*/
List<Set<String>> getSubset(Set <String> set){
List<Set<String>> result = new ArrayList<Set<String>>();
String [] setArr = set.toArray(new String[0]);
for( int i = 0; i < setArr.length; i++){
Set<String> subSet = new TreeSet<String>();
for(int j = 0; j < setArr.length; j++){
if( i != j){
subSet.add((String) setArr[j]);
}
}
result.add(subSet);
}
return result;
}
/**
* 功能:打印频繁项集
*/
void printSet(List<Set<String>> setList, int i){
System.out.print("频繁" + i + "项集: 共" + setList.size() + "项: {");
for(Set<String> set : setList) {
System.out.print("[");
for(String str : set) {
System.out.print(str + " ");
}
System.out.print("], ");
}
System.out.println("}");
}
}
测试