文章说明:因Linux平台再GUI页面经过IDE进行Hadoop开发,会致使Linux在GUI上极度消耗资源,对于一些配置不是很高的PC,可能会出现卡顿的状况,很是影响程序编写,本文就详细介绍如何在windows平台进行hadoop开发,但愿对各位学习Hadoop的同窗优异java
工具:apache
上述工具下载地址:下载地址windows
Hadoop版本 : hadoop-2.7.3app
启动hadoop : start-yarn.sh、start-dfs.sheclipse
windows本地配置Linux的主机IP映射:(不配置直接使用IP也行)ide
将hadoop-eclipse-plugin-2.7.3.jar放进eclipse的plugins目录,启动eclipse工具
eclipse配置Hadoopoop
import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; /** * 统计文本词频信息 * @author Zerone1993 */ public class WordCount { static class WordMapper extends Mapper<LongWritable, Text, Text, IntWritable>{ @Override protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, IntWritable>.Context context) throws IOException, InterruptedException { String str = value.toString(); StringTokenizer st = new StringTokenizer(str); while(st.hasMoreTokens()){ String temp = st.nextToken(); context.write(new Text(temp), new IntWritable(1)); } } } static class WordReducer extends Reducer<Text, IntWritable, Text, IntWritable>{ @Override protected void reduce(Text arg0, Iterable<IntWritable> arg1, Reducer<Text, IntWritable, Text, IntWritable>.Context arg2) throws IOException, InterruptedException { int sum = 0; for(IntWritable temp : arg1){ sum = sum + temp.get(); } arg2.write(new Text(arg0), new IntWritable(sum)); } } public static void main(String[] args) { Configuration conf = new Configuration(); conf.set("mapred.job.tracker", "master:50020"); try{ Job job = Job.getInstance(conf, "wordCount"); job.setJarByClass(WordCount.class); //设置启动做业类 job.setMapperClass(WordMapper.class); //设置Map类 job.setReducerClass(WordReducer.class); job.setMapOutputKeyClass(Text.class); //设置mapper输出的key类型 job.setMapOutputValueClass(IntWritable.class); //设置mapper输出的value类型 job.setNumReduceTasks(1); //设置Reduce Task的数量 //设置mapreduce的输入和输出目录 FileInputFormat.addInputPath(job, new Path("hdfs://master:9090/user/squirrel/input/mapreduce/")); FileOutputFormat.setOutputPath(job, new Path("hdfs://master:9090/user/squirrel/output/mapreduce/") ); //等待mapreduce整个过程完成 System.exit(job.waitForCompletion(true)?0:1); }catch(Exception e){ e.printStackTrace(); } } }
效果:学习