spark SQL编程

1.编程实现将 RDD 转换为 DataFrame
源文件内容以下(包含 id,name,age):
java

1,Ella,36
2,Bob,29
3,Jack,29

 

 

将数据复制保存到 Linux 系统中,命名为 employee.txt,实现从 RDD 转换获得DataFrame,并按“id:1,name:Ella,age:36”的格式打印出 DataFrame 的全部数据。请写出程序代码。 

mysql

import org.apache.spark.sql.types._ import org.apache.spark.sql.Encoder import org.apache.spark.sql.Row import org.apache.spark.sql.SparkSession object RDDtoDF { def main(args: Array[String]) { val spark=SparkSession.builder().appName("RddToFrame").master("local").getOrCreate() import spark.implicits._ val employeeRDD=spark.sparkContext.textFile("file:///usr/local/spark/employee.txt") val schemaString="id name age" val fields=schemaString.split(" ").map(fieldName=>StructField (fieldName,StringType,nullable = true)) val schema = StructType(fields) val rowRDD = employeeRDD.map(_.split(",")).map(attributes => Row(attributes(0).trim, attributes(1), attributes(2).trim)) val employeeDF = spark.createDataFrame(rowRDD, schema) employeeDF.createOrReplaceTempView("employee") val results=spark.sql("select id,name,age from employee") results.map(t => "id:"+t(0)+","+"name:"+t(1)+","+"age:"+t(2)).show() } }

2.编程实现利用 DataFrame 读写 MySQL 的数据
1)在 MySQL 数据库中新建数据库 sparktest,再建立表 employee,包含如表 6-2 所示的
两行数据。
6-2 employee 表原有数据
sql

id name gender Age
1 Alice F 22
2 John M 25

 打开mysql数据库

 


2)配置 Spark 经过 JDBC 链接数据库 MySQL,编程实现利用 DataFrame 插入如表 6-3 所示的两行数据到 MySQL 中,最后打印出 age 的最大值和 age 的总和。

6-3 employee 表新增数据
apache

id name gender age
3 Mary F 26
4 Tom M 23

 

 

import java.util.Properties import org.apache.spark.sql.types._ import org.apache.spark.sql.Row import org.apache.spark.sql.SparkSession object TestMySQL { def main(args: Array[String]): Unit = { val spark=SparkSession.builder().appName("TestMySQL").master("local").getOrCreate() import spark.implicits._ val employeeRDD=spark.sparkContext.parallelize(Array("3 Mary F 26","4 Tom M 23")).map(_.split(" ")) val schema=StructType(List(StructField("id",IntegerType, true),StructField("name",StringType,true),StructField("gender",StringType,true), StructField("age",IntegerType,true))) val rowRDD=employeeRDD.map(p=>Row(p(0).toInt,p(1).trim,p(2).trim,p(3).toInt)) val employeeDF=spark.createDataFrame(rowRDD,schema) val prop=new Properties() prop.put("user","root") prop.put("password","wangli") prop.put("driver","com.mysql.jdbc.Driver") employeeDF.write.mode("append").jdbc("jdbc:mysql://localhost:3306/sparktest","sparktest.employee",prop) val jdbcDF = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/sparktest").option("driver","com.mysql.jdbc.Driver").option("dbtable","employee") .option("user","root").option("password", "wangli").load() jdbcDF.agg("age" -> "max", "age" -> "sum").show() } }

 

 

相关文章
相关标签/搜索