1)Driver驱动中的一个集合(parallelizePairs parallelize)java
2)从本地(file:///d:/test)或者网络(file:///hdfs:localhost:7777)存上获取git
textFile textWholeFilesgithub
3)流式数据源:Socket (socketTextStream)数据库
一、普通文件apache
二、JSONjson
三、CSVapi
若是CSV的全部数据字段均没有包含换行符,可使用 textFile() 读取并解析数据,若是在字段中嵌有换行符,就须要用wholeTextFiles()完整读入每一个文件,而后解析各段.数组
因为在 CSV 中咱们不会在每条记录中输出字段名,所以为了使输出保持一致,须要 建立一种映射关系。一种简单作法是写一个函数,用于将各字段转为指定顺序的数组。网络
四、sequence file 二进制形式 键值对多线程
五、object file JDK 序列化(看起来是对sequenceFile进行了简单封装,他容许存储只包含值的RDD,和sequenceFile不同的是,对象文件是java序列化写出的,读取的对象不能改变(输出会依赖对象))
import java.io.Serializable; import java.io.StringReader; import java.util.ArrayList; import java.util.Iterator; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.api.java.function.FlatMapFunction; import org.apache.spark.api.java.function.Function; import scala.Tuple2; import au.com.bytecode.opencsv.CSVReader; import com.fasterxml.jackson.databind.ObjectMapper; public class SparkIO_File { public static void main(String[] args) { SparkConf conf = new SparkConf().setMaster("local[2]").setAppName("SparkIO").set("spark.testing.memory", "2147480000"); JavaSparkContext sc = new JavaSparkContext(conf); sc.setLogLevel("WARN"); fileTest(sc); sc.stop(); sc.close(); } static void fileTest(JavaSparkContext sc){ //每行都是rdd // JavaRDD<String> rdd = sc.textFile("file:///E:/codes2016/workspace/Spark1/src/spark1106_StreamSpark/UpdateStateByKeyDemo.java"); //wholeTextFiles返回一个键值对类型,键为文件全路径,值为文件内容,分区数是2 JavaPairRDD<String, String> rdd = sc.wholeTextFiles("file:///E:/codes2016/workspace/Spark1/src/spark1106_StreamSpark"); System.out.println("分区数:"+rdd.getNumPartitions()); //分区数为2 rdd.foreach(x->{ System.out.println("当前元素:" + x); }); System.out.println(rdd.count()); rdd.saveAsTextFile("file:///d:/jsontext/filewholetext"); } }
import java.io.Serializable; import java.io.StringReader; import java.util.ArrayList; import java.util.Iterator; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.api.java.function.FlatMapFunction; import org.apache.spark.api.java.function.Function; import scala.Tuple2; import au.com.bytecode.opencsv.CSVReader; import com.fasterxml.jackson.databind.ObjectMapper; public class SparkIO_JSON { public static void main(String[] args) { SparkConf conf = new SparkConf().setMaster("local[2]").setAppName("SparkIO").set("spark.testing.memory", "2147480000"); JavaSparkContext sc = new JavaSparkContext(conf); sc.setLogLevel("WARN"); writeJsonTest(sc); sc.stop(); sc.close(); } //读JSON static void readJsonTest(JavaSparkContext sc){ //若是json文件中断了行就读不出来了,没截断的部分任然会显示 JavaRDD<String> input = sc.textFile("file:///d:/jsontext/jsonsong.json"); //使用wholetextfile就不会有断行的错误,由于读的是整个文件 // JavaRDD<String> input = sc.wholeTextFiles("file:///d:/jsontext/jsonsong.json"); // JavaRDD<Mp3Info> result = input.mapPartitions(new ParseJson()); JavaRDD<Mp3Info> result = input.map(x->{ ObjectMapper mapper=new ObjectMapper(); return mapper.readValue(x, Mp3Info.class); }); result.foreach(x->System.out.println(x)); } //写JSON static void writeJsonTest(JavaSparkContext sc){ JavaRDD<String> input = sc.textFile("file:///d:/jsontext/jsonsong.json"); JavaRDD<Mp3Info> result = input.mapPartitions(new ParseJson()). filter( x->x.getAlbum().equals("怀旧专辑") ); // JavaRDD<String> formatted = result.mapPartitions(new WriteJson()); JavaRDD<String> formatted = result.map(x->{ ObjectMapper mapper=new ObjectMapper(); return mapper.writeValueAsString(x); }); result.foreach(x->System.out.println(x)); formatted.saveAsTextFile("file:///d:/jsontext/jsonsongout"); } } class ParseJson implements FlatMapFunction<Iterator<String>, Mp3Info>, Serializable { public Iterator<Mp3Info> call(Iterator<String> lines) throws Exception { ArrayList<Mp3Info> people = new ArrayList<Mp3Info>(); ObjectMapper mapper = new ObjectMapper(); while (lines.hasNext()) { String line = lines.next(); try { people.add(mapper.readValue(line, Mp3Info.class)); } catch (Exception e) { e.printStackTrace(); } } return people.iterator(); } } class WriteJson implements FlatMapFunction<Iterator<Mp3Info>, String> { public Iterator<String> call(Iterator<Mp3Info> song) throws Exception { ArrayList<String> text = new ArrayList<String>(); ObjectMapper mapper = new ObjectMapper(); while (song.hasNext()) { Mp3Info person = song.next(); text.add(mapper.writeValueAsString(person)); } return text.iterator(); } } class Mp3Info implements Serializable{ /* {"name":"上海滩","singer":"叶丽仪","album":"香港电视剧主题歌","path":"mp3/shanghaitan.mp3"} {"name":"一辈子何求","singer":"陈百强","album":"香港电视剧主题歌","path":"mp3/shanghaitan.mp3"} {"name":"红日","singer":"李克勤","album":"怀旧专辑","path":"mp3/shanghaitan.mp3"} {"name":"爱如潮水","singer":"张信哲","album":"怀旧专辑","path":"mp3/airucaoshun.mp3"} {"name":"红茶馆","singer":"陈惠嫻","album":"怀旧专辑","path":"mp3/redteabar.mp3"} */ private String name; private String album; private String path; private String singer; public String getSinger() { return singer; } public void setSinger(String singer) { this.singer = singer; } public String getName() { return name; } public void setName(String name) { this.name = name; } public String getAlbum() { return album; } public void setAlbum(String album) { this.album = album; } public String getPath() { return path; } public void setPath(String path) { this.path = path; } @Override public String toString() { return "Mp3Info [name=" + name + ", album=" + album + ", path=" + path + ", singer=" + singer + "]"; } } /* {"name":"上海滩","singer":"叶丽仪","album":"香港电视剧主题歌","path":"mp3/shanghaitan.mp3"} {"name":"一辈子何求","singer":"陈百强","album":"香港电视剧主题歌","path":"mp3/shanghaitan.mp3"} {"name":"红日","singer":"李克勤","album":"怀旧专辑","path":"mp3/shanghaitan.mp3"} {"name":"爱如潮水","singer":"张信哲","album":"怀旧专辑","path":"mp3/airucaoshun.mp3"} {"name":"红茶馆","singer":"陈惠嫻","album":"怀旧专辑","path":"mp3/redteabar.mp3"} */
import java.io.StringReader; import java.io.StringWriter; import java.util.Arrays; import java.util.Iterator; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.api.java.function.FlatMapFunction; import org.apache.spark.api.java.function.Function; import scala.Tuple2; import au.com.bytecode.opencsv.CSVReader; import au.com.bytecode.opencsv.CSVWriter; public class SparkIO_CSV { public static void main(String[] args) { SparkConf conf = new SparkConf().setMaster("local[2]").setAppName("SparkIO").set("spark.testing.memory", "2147480000"); JavaSparkContext sc = new JavaSparkContext(conf); sc.setLogLevel("WARN"); readCsv2(sc); sc.stop(); sc.close(); } static void readCsv1(JavaSparkContext sc) { JavaRDD<String> csvFile1 = sc.textFile("file:///d:/jsontext/csvsong.csv"); // csvFile1.foreach(x->System.out.println(x)); JavaRDD<String[]> csvData = csvFile1.map(new ParseLine()); csvData.foreach(x->{ for(String s : x){ System.out.println(s); } } ); } static void writeCsv1(JavaSparkContext sc) { JavaRDD<String> csvFile1 = sc.textFile("file:///d:/jsontext/csvsong.csv"); JavaRDD<String[]> parsedData = csvFile1.map(new ParseLine()); parsedData = parsedData.filter(x->x[2].equals("怀旧专辑")); //过滤 若是在这里存文件的话,存的是数组类型的对象 parsedData.foreach( x->{ long id = Thread.currentThread().getId(); System.out.println("在线程 "+ id +" 中" + "打印当前数据元素:"); for(String s : x){ System.out.print(s+ " "); } System.out.println(); } ); parsedData.map(x->{ StringWriter stringWriter = new StringWriter(); CSVWriter csvWriter = new CSVWriter(stringWriter); csvWriter.writeNext(x); //把数组转换成为CSV的格式 csvWriter.close(); return stringWriter.toString(); }).saveAsTextFile("file:///d:/jsontext/csvout"); } public static class ParseLine implements Function<String, String[]> { public String[] call(String line) throws Exception { CSVReader reader = new CSVReader(new StringReader(line)); String[] lineData = reader.readNext(); reader.close(); //关闭流资源 // String[] lineData =line.split(","); //这样还有 return lineData; } } static void readCsv2(JavaSparkContext sc){ //若是文件中有断行,wholetextfile能够跳行 JavaPairRDD<String, String> csvData = sc.wholeTextFiles("d:/jsontext/csvsong.csv"); JavaRDD<String[]> keyedRDD = csvData.flatMap(new ParseLineWhole()); keyedRDD.foreach(x-> { for(String s : x){ System.out.println(s); } } ); } public static class ParseLineWhole implements FlatMapFunction<Tuple2<String, String>, String[]> { public Iterator<String[]> call(Tuple2<String, String> file) throws Exception { CSVReader reader = new CSVReader(new StringReader(file._2())); Iterator<String[]> data = reader.readAll().iterator(); reader.close(); return data; } } } /* "上海滩","叶丽仪","香港电视剧主题歌","mp3/shanghaitan.mp3" "一辈子何求","陈百强","香港电视剧主题歌","mp3/shanghaitan.mp3" "红日","李克勤","怀旧专辑","mp3/shanghaitan.mp3" "爱如潮水","张信哲","怀旧专辑","mp3/airucaoshun.mp3" "红茶馆","陈惠嫻","怀旧专辑","mp3/redteabar.mp3" */
import java.util.ArrayList; import java.util.Arrays; import java.util.List; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.api.java.function.PairFunction; import org.apache.spark.serializer.KryoSerializer; import scala.Tuple2; public class SparkIO_SeqFile { public static void main(String[] args) { //多线程,开了两个线程 SparkConf conf = new SparkConf().setMaster("local[2]").setAppName("SparkIO") .set("spark.testing.memory", "2147480000") .set("spark.serializer", "org.apache.spark.serializer.KryoSerializer"); JavaSparkContext sc = new JavaSparkContext(conf); sc.setLogLevel("WARN"); //sequenceFile存取的是键值对,是序列化文本文件(将对象转换为二进制形式) writeSeqFile(sc); readSeqFile(sc); sc.stop(); sc.close(); } private static class ConvertToNativeTypes implements PairFunction<Tuple2<Text, IntWritable>, String, Integer> { public Tuple2<String, Integer> call(Tuple2<Text, IntWritable> record) { return new Tuple2<String, Integer>(record._1.toString(), record._2.get()); } } private static void writeSeqFile(JavaSparkContext sc) { List<Tuple2<String, Integer>> data = new ArrayList<Tuple2<String, Integer>>(); data.add(new Tuple2<String, Integer>("ABC", 1)); data.add(new Tuple2<String, Integer>("DEF", 3)); data.add(new Tuple2<String, Integer>("GHI", 2)); data.add(new Tuple2<String, Integer>("JKL", 4)); data.add(new Tuple2<String, Integer>("ABC", 1)); // JavaPairRDD<String, Integer> rdd1 = sc.parallelizePairs(Arrays.asList(("d",1)),1); //设置分区数,有多少个分区数就有多少个输出文件 JavaPairRDD<String, Integer> rdd = sc.parallelizePairs(data, 1); String dir = "file:///D:jsontext/sequenceFile"; //sequenceFile将键值对使用maptoPair装换为文本类型的键值对 JavaPairRDD<Text, IntWritable> result = rdd.mapToPair(new ConvertToWritableTypes()); //四个参数,文件名,输出键值对的类型,输出格式 saveAsNewAPIHadoopFile是新接口 result.saveAsNewAPIHadoopFile(dir, Text.class, IntWritable.class, SequenceFileOutputFormat.class); } static class ConvertToWritableTypes implements PairFunction<Tuple2<String, Integer>, Text, IntWritable> { public Tuple2<Text, IntWritable> call(Tuple2<String, Integer> record) { return new Tuple2<Text, IntWritable>(new Text(record._1), new IntWritable(record._2)); } } private static void readSeqFile(JavaSparkContext sc) { //读取sequenceFile文件,输出到PairRDD,三个参数,文件名,输入键值对类型 JavaPairRDD<Text, IntWritable> input = sc.sequenceFile( "file:///D:/jsontext/sequenceFile", Text.class, IntWritable.class); // input.foreach(System.out::println); //调用mapToPair将文件的键值对装换为string的键值对类型,输出 JavaPairRDD<String, Integer> result = input.mapToPair(new ConvertToNativeTypes()); result.foreach(x->System.out.println(x)); } }
import java.io.Serializable; import java.util.ArrayList; import java.util.List; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.api.java.function.PairFunction; import scala.Tuple2; public class SparkIO_ObjFile { public static void main(String[] args) { SparkConf conf = new SparkConf().setMaster("local[2]").setAppName("SparkIO").set("spark.testing.memory", "2147480000"); JavaSparkContext sc = new JavaSparkContext(conf); sc.setLogLevel("WARN"); writeObjFile(sc); //文件所读取的对象是person对象,输出的形式为person对象,因此若是没有了person对象,foreach输出将会报错 readObjFile(sc); sc.stop(); sc.close(); } private static void readObjFile(JavaSparkContext sc) { //object二进制文件读取为rdd JavaRDD<Object> input = sc.objectFile("file:///D:/jsontext/objFile"); //输出object文件时自动读取引用的person对象,若是person对象不存在,将会报错,终止操做 input.foreach(x->System.out.println(x)); } private static void writeObjFile(JavaSparkContext sc) { List<Person> data = new ArrayList<Person>(); data.add(new Person("ABC", 1)); data.add(new Person("DEF", 3)); data.add(new Person("GHI", 2)); data.add(new Person("JKL", 4)); data.add(new Person("ABC", 1)); //设置分区数,多少个分区数有多少个个输出文件 JavaRDD<Person> rdd = sc.parallelize(data, 2); //将文件保存为textFile类型,输出为文本文件,可见的文本为tostring方法 String dir = "file:///D:/jsontext/textFile"; rdd.saveAsTextFile(dir); //输出为objectFile类型,为二进制文件,此文件保存的是对象的类型和值,类型为文本类型,值为二进制类型,使用saveAsObject方法存到文件 //objectFile存储只包含值的rdd String dir1 = "file:///D:/jsontext/objFile"; rdd.saveAsObjectFile(dir1); } static class Person implements Serializable{ public Person(String name, int id) { super(); this.name = name; this.id = id; } @Override public String toString() { return "Person [name=" + name + ", id=" + id + "]"; } String name; int id; } }
一、例如:KeyValueTextInputFormat 是最简单的 Hadoop 输入格式之一,能够用于从文本文件中读取 键值对数据。每一行都会被独立处理,键和值之间用制表符隔开。
newAPIHadoopFile/saveAsNewAPIHadoopFile
二、非文件系统数据(HBase/MongoDB)
使用newAPIHadoopDataset/saveAsNewAPIHadoopDataset
三、Protocol buffer(简称 PB,https://github.com/google/protobuf)
一、本地文件系统
file:///D:/sequenceFile
file:///home/sequenceFile
Spark 支持从本地文件系统中读取文件,不过它要求文件在集群中全部节点的相同路径下 均可以找到。
一些像 NFS、AFS 以及 MapR 的 NFS layer 这样的网络文件系统会把文件以本地文件系统 的形式暴露给用户。若是你的数据已经在这些系统中,那么你只须要指定输入为一个 file:// 路径;只要这个文件系统挂载在每一个节点的同一个路径下,Spark 就会自动处理(如例 5-29 所示)。若是文件尚未放在集群中的全部节点上,你能够在驱动器程序中从本地读取该文件而无 需使用整个集群,而后再调用 parallelize 将内容分发给工做节点。不过这种方式可能会 比较慢,因此推荐的方法是将文件先放到像 HDFS、NFS、S3 等共享文件系统上。
二、 网络文件系统
file:///hdfs:localhost:7088/ sequenceFile
一、JDBC
二、Cassandra
三、HBase
四、Elasticsearch