如何构建一个分布式爬虫:基础篇

上篇咱们谈论了Celery的基本知识后,本篇继续讲解如何一步步使用Celery构建分布式爬虫。此次咱们抓取的对象定为celery官方文档html

首先,咱们新建目录distributedspider,而后再在其中新建文件workers.py,里面内容以下python

from celery import Celery
app = Celery('crawl_task', include=['tasks'], broker='redis://223.129.0.190:6379/1', backend='redis://223.129.0.190:6379/2')
# 官方推荐使用json做为消息序列化方式
app.conf.update(
    CELERY_TIMEZONE='Asia/Shanghai',
    CELERY_ENABLE_UTC=True,
    CELERY_ACCEPT_CONTENT=['json'],
    CELERY_TASK_SERIALIZER='json',
    CELERY_RESULT_SERIALIZER='json',
)

上述代码主要是作Celery实例的初始化工做,include是在初始化celery app的时候须要引入的内容,主要就是注册为网络调用的函数所在的文件。而后咱们再编写任务函数,新建文件tasks.py,内容以下git

import requests
from bs4 import BeautifulSoup
from workers import app
@app.task
def crawl(url):
    print('正在抓取连接{}'.format(url))
    resp_text = requests.get(url).text
    soup = BeautifulSoup(resp_text, 'html.parser')
    return soup.find('h1').text

它的做用很简单,就是抓取指定的url,而且把标签为h1的元素提取出来github

最后,咱们新建文件task_dispatcher.py,内容以下redis

from workers import app
url_list = [
    'http://docs.celeryproject.org/en/latest/getting-started/introduction.html',
    'http://docs.celeryproject.org/en/latest/getting-started/brokers/index.html',
    'http://docs.celeryproject.org/en/latest/getting-started/first-steps-with-celery.html',
    'http://docs.celeryproject.org/en/latest/getting-started/next-steps.html',
    'http://docs.celeryproject.org/en/latest/getting-started/resources.html',
    'http://docs.celeryproject.org/en/latest/userguide/application.html',
    'http://docs.celeryproject.org/en/latest/userguide/tasks.html',
    'http://docs.celeryproject.org/en/latest/userguide/canvas.html',
    'http://docs.celeryproject.org/en/latest/userguide/workers.html',
    'http://docs.celeryproject.org/en/latest/userguide/daemonizing.html',
    'http://docs.celeryproject.org/en/latest/userguide/periodic-tasks.html'
]
def manage_crawl_task(urls):
    for url in urls:
        app.send_task('tasks.crawl', args=(url,))
if __name__ == '__main__':
    manage_crawl_task(url_list)

这段代码的做用主要就是给worker发送任务,任务是tasks.crawl,参数是url(元祖的形式)json

如今,让咱们在节点A(hostname为resolvewang的主机)上启动workercanvas

celery -A workers worker -c 2 -l info网络

这里 -c指定了线程数为2, -l表示日志等级是info。咱们把代码拷贝到节点B(节点名为wpm的主机),一样以相同命令启动worker,即可以看到如下输出app

两个节点

能够看到左边节点(A)先是all alone,表示只有一个节点;后来再节点B启动后,它便和B同步了分布式

sync with celery@wpm

这个时候,咱们运行给这两个worker节点发送抓取任务

python task_dispatcher.py

能够看到以下输出

分布式抓取示意图

能够看到两个节点都在执行抓取任务,而且它们的任务不会重复。咱们再在redis里看看结果

backend示意图

能够看到一共有11条结果,说明 tasks.crawl中返回的数据都在db2(backend)中了,而且以json的形式存储了起来,除了返回的结果,还有执行是否成功等信息。

到此,咱们就实现了一个很基础的分布式网络爬虫,可是它还不具备很好的扩展性,并且貌似太简单了...下一篇我将以微博数据采集为例来演示如何构建一个稳健的分布式网络爬虫。


对微博大规模数据采集感兴趣的同窗能够关注一下分布式微博爬虫,用用也是极好的

相关文章
相关标签/搜索