这是java高并发系列第32篇文章。java
java环境:jdk1.8。算法
需求:一个jvm中实现一个计数器功能,需保证多线程状况下数据正确性。安全
咱们来模拟50个线程,每一个线程对计数器递增100万次,最终结果应该是5000万。微信
咱们使用4种方式实现,看一下其性能,而后引出为何须要使用LongAdder
、LongAccumulator
。多线程
package com.itsoku.chat32; import java.util.ArrayList; import java.util.List; import java.util.concurrent.CompletableFuture; import java.util.concurrent.CountDownLatch; import java.util.concurrent.ExecutionException; import java.util.concurrent.atomic.LongAccumulator; /** * 跟着阿里p7学并发,微信公众号:javacode2018 */ public class Demo1 { static int count = 0; public static synchronized void incr() { count++; } public static void main(String[] args) throws ExecutionException, InterruptedException { for (int i = 0; i < 10; i++) { count = 0; m1(); } } private static void m1() throws InterruptedException { long t1 = System.currentTimeMillis(); int threadCount = 50; CountDownLatch countDownLatch = new CountDownLatch(threadCount); for (int i = 0; i < threadCount; i++) { new Thread(() -> { try { for (int j = 0; j < 1000000; j++) { incr(); } } finally { countDownLatch.countDown(); } }).start(); } countDownLatch.await(); long t2 = System.currentTimeMillis(); System.out.println(String.format("结果:%s,耗时(ms):%s", count, (t2 - t1))); } }
输出:并发
结果:50000000,耗时(ms):1437 结果:50000000,耗时(ms):1913 结果:50000000,耗时(ms):386 结果:50000000,耗时(ms):383 结果:50000000,耗时(ms):381 结果:50000000,耗时(ms):382 结果:50000000,耗时(ms):379 结果:50000000,耗时(ms):379 结果:50000000,耗时(ms):392 结果:50000000,耗时(ms):384
平均耗时:390毫秒框架
package com.itsoku.chat32; import java.util.concurrent.CountDownLatch; import java.util.concurrent.ExecutionException; import java.util.concurrent.atomic.AtomicLong; /** * 跟着阿里p7学并发,微信公众号:javacode2018 */ public class Demo2 { static AtomicLong count = new AtomicLong(0); public static void incr() { count.incrementAndGet(); } public static void main(String[] args) throws ExecutionException, InterruptedException { for (int i = 0; i < 10; i++) { count.set(0); m1(); } } private static void m1() throws InterruptedException { long t1 = System.currentTimeMillis(); int threadCount = 50; CountDownLatch countDownLatch = new CountDownLatch(threadCount); for (int i = 0; i < threadCount; i++) { new Thread(() -> { try { for (int j = 0; j < 1000000; j++) { incr(); } } finally { countDownLatch.countDown(); } }).start(); } countDownLatch.await(); long t2 = System.currentTimeMillis(); System.out.println(String.format("结果:%s,耗时(ms):%s", count, (t2 - t1))); } }
输出:jvm
结果:50000000,耗时(ms):971 结果:50000000,耗时(ms):915 结果:50000000,耗时(ms):920 结果:50000000,耗时(ms):923 结果:50000000,耗时(ms):910 结果:50000000,耗时(ms):916 结果:50000000,耗时(ms):923 结果:50000000,耗时(ms):916 结果:50000000,耗时(ms):912 结果:50000000,耗时(ms):908
平均耗时:920毫秒ide
AtomicLong
内部采用CAS的方式实现,并发量大的状况下,CAS失败率比较高,致使性能比synchronized还低一些。并发量不是太大的状况下,CAS性能仍是能够的。函数
AtomicLong
属于JUC中的原子类,还不是很熟悉的能够看一下:JUC中原子类,一篇就够了
先介绍一下LongAdder
,说到LongAdder,不得不提的就是AtomicLong,AtomicLong是JDK1.5开始出现的,里面主要使用了一个long类型的value做为成员变量,而后使用循环的CAS操做去操做value的值,并发量比较大的状况下,CAS操做失败的几率较高,内部失败了会重试,致使耗时可能会增长。
LongAdder是JDK1.8开始出现的,所提供的API基本上能够替换掉原先的AtomicLong。LongAdder在并发量比较大的状况下,操做数据的时候,至关于把这个数字分红了不少份数字,而后交给多我的去管控,每一个管控者负责保证部分数字在多线程状况下操做的正确性。当多线程访问的时,经过hash算法映射到具体管控者去操做数据,最后再汇总全部的管控者的数据,获得最终结果。至关于下降了并发状况下锁的粒度,因此效率比较高,看一下下面的图,方便理解:
代码:
package com.itsoku.chat32; import java.util.concurrent.CountDownLatch; import java.util.concurrent.ExecutionException; import java.util.concurrent.atomic.AtomicLong; import java.util.concurrent.atomic.LongAdder; /** * 跟着阿里p7学并发,微信公众号:javacode2018 */ public class Demo3 { static LongAdder count = new LongAdder(); public static void incr() { count.increment(); } public static void main(String[] args) throws ExecutionException, InterruptedException { for (int i = 0; i < 10; i++) { count.reset(); m1(); } } private static void m1() throws ExecutionException, InterruptedException { long t1 = System.currentTimeMillis(); int threadCount = 50; CountDownLatch countDownLatch = new CountDownLatch(threadCount); for (int i = 0; i < threadCount; i++) { new Thread(() -> { try { for (int j = 0; j < 1000000; j++) { incr(); } } finally { countDownLatch.countDown(); } }).start(); } countDownLatch.await(); long t2 = System.currentTimeMillis(); System.out.println(String.format("结果:%s,耗时(ms):%s", count.sum(), (t2 - t1))); } }
输出:
结果:50000000,耗时(ms):206 结果:50000000,耗时(ms):105 结果:50000000,耗时(ms):107 结果:50000000,耗时(ms):107 结果:50000000,耗时(ms):105 结果:50000000,耗时(ms):99 结果:50000000,耗时(ms):106 结果:50000000,耗时(ms):102 结果:50000000,耗时(ms):106 结果:50000000,耗时(ms):102
平均耗时:100毫秒
代码中new LongAdder()
建立一个LongAdder对象,内部数字初始值是0,调用increment()
方法能够对LongAdder内部的值原子递增1。reset()
方法能够重置LongAdder
的值,使其归0。
LongAccumulator介绍
LongAccumulator是LongAdder的功能加强版。LongAdder的API只有对数值的加减,而LongAccumulator提供了自定义的函数操做,其构造函数以下:
/** * accumulatorFunction:须要执行的二元函数(接收2个long做为形参,并返回1个long) * identity:初始值 **/ public LongAccumulator(LongBinaryOperator accumulatorFunction, long identity) { this.function = accumulatorFunction; base = this.identity = identity; }
示例代码:
package com.itsoku.chat32; import java.util.concurrent.CountDownLatch; import java.util.concurrent.ExecutionException; import java.util.concurrent.atomic.LongAccumulator; import java.util.concurrent.atomic.LongAdder; /** * 跟着阿里p7学并发,微信公众号:javacode2018 */ public class Demo4 { static LongAccumulator count = new LongAccumulator((x, y) -> x + y, 0L); public static void incr() { count.accumulate(1); } public static void main(String[] args) throws ExecutionException, InterruptedException { for (int i = 0; i < 10; i++) { count.reset(); m1(); } } private static void m1() throws ExecutionException, InterruptedException { long t1 = System.currentTimeMillis(); int threadCount = 50; CountDownLatch countDownLatch = new CountDownLatch(threadCount); for (int i = 0; i < threadCount; i++) { new Thread(() -> { try { for (int j = 0; j < 1000000; j++) { incr(); } } finally { countDownLatch.countDown(); } }).start(); } countDownLatch.await(); long t2 = System.currentTimeMillis(); System.out.println(String.format("结果:%s,耗时(ms):%s", count.longValue(), (t2 - t1))); } }
输出:
结果:50000000,耗时(ms):138 结果:50000000,耗时(ms):111 结果:50000000,耗时(ms):111 结果:50000000,耗时(ms):103 结果:50000000,耗时(ms):103 结果:50000000,耗时(ms):105 结果:50000000,耗时(ms):101 结果:50000000,耗时(ms):106 结果:50000000,耗时(ms):102 结果:50000000,耗时(ms):103
平均耗时:100毫秒
LongAccumulator
的效率和LongAdder
差很少,不过更灵活一些。
调用new LongAdder()
等价于new LongAccumulator((x, y) -> x + y, 0L)
。
从上面4个示例的结果来看,LongAdder、LongAccumulator
全面超越同步锁及AtomicLong
的方式,建议在使用AtomicLong
的地方能够直接替换为LongAdder、LongAccumulator
,吞吐量更高一些。
阿里p7一块儿学并发,公众号:路人甲java,天天获取最新文章!