hive的join操做express
Join的语法规则: www.2cto.com join_table: table_reference JOIN table_factor [join_condition] | table_reference {LEFT|RIGHT|FULL} [OUTER] JOIN table_reference join_condition | table_reference LEFT SEMI JOIN table_reference join_condition table_reference: table_factor | join_table table_factor: tbl_name [alias] | table_subquery alias | ( table_references ) join_condition: ON equality_expression ( AND equality_expression )* equality_expression: expression = expression Hive 只支持等值链接(equality joins)、外链接(outer joins)和(left semi joins)。 www.2cto.com Hive 不支持全部非等值的链接,由于非等值链接很是难转化到 map/reduce 任务。另外,Hive 支持多于 2 个表的链接。 join left/right outer join:必定输出左边/右边的每一行对应结果(其实均可以转换为作链接) left semi join 用于实现a.key in select key from table b(即in/exist功能) 1. 只支持等值join,例如: SELECT a.* FROM a JOIN b ON (a.id = b.id) SELECT a.* FROM a JOIN b ON (a.id = b.id AND a.department = b.department) 是正确的,然而: SELECT a.* FROM a JOIN b ON (a.id b.id) 是错误的。 www.2cto.com 2. 能够 join 多于 2 个表,例如 SELECT a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key2) 若是join中多个表的 join key 是同一个,则 join 会被转化为单个 map/reduce 任务,例如: SELECT a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key1) 被转化为单个 map/reduce 任务,由于 join 中只使用了 b.key1 做为 join key。 SELECT a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key2) 而这一 join 被转化为 2 个 map/reduce 任务。由于 b.key1 用于第一次 join 条件,而 b.key2 用于第二次 join。 join 时,每次 map/reduce 任务的逻辑是这样的:reducer 会缓存 join 序列中除了最后一个表的全部表的记录,再经过最后一个表将结果序列化到文件系统。 这一实现有助于在 reduce 端减小内存的使用量。实践中,应该把最大的那个表写在最后(不然会由于缓存浪费大量内存)。例如: SELECT a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key1) 全部表都使用同一个 join key(使用 1 次 map/reduce 任务计算)。Reduce 端会缓存 a 表和 b 表的记录,而后每次取得一个 c 表的记录就计算一次 join 结果,相似的还有: SELECT a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key2) 这里用了 2 次 map/reduce 任务。第一次缓存 a 表,用 b 表序列化;第二次缓存第一次 map/reduce 任务的结果,而后用 c 表序列化。 LEFT,RIGHT 和 FULL OUTER 关键字用于处理 join 中空记录的状况,例如: SELECT a.val, b.val FROM a LEFT OUTER JOIN b ON (a.key=b.key) 对应全部 a 表中的记录都有一条记录输出。当 a.key=b.key 时,输出的结果应该是 a.val, b.val;而当 b.key 中找不到等值的 a.key 记录时也会输出 a.val, NULL。 “FROM a LEFT OUTER JOIN b”这句必定要写在同一行——意思是 a 表在 b 表的左边,因此 a 表中的全部记录都被保留了;“a RIGHT OUTER JOIN b”会保留全部 b 表的记录。OUTER JOIN 语义应该是遵循标准 SQL spec的。 Join 发生在 WHERE 子句以前。 若是你想限制 join 的输出,应该在 WHERE 子句中写过滤条件——或是在 join 子句中写。这里面一个容易混淆的问题是表分区的状况: SELECT a.val, b.val FROM a LEFT OUTER JOIN b ON (a.key=b.key) WHERE a.ds='2009-07-07' AND b.ds='2009-07-07' 会 join a 表到 b 表(OUTER JOIN),列出 a.val 和 b.val 的记录。WHERE 从句中可使用其余列做为过滤条件。可是,如前所述,若是 b 表中找不到对应 a 表的记录,b 表的全部列都会列出 NULL,包括 ds 列。也就是说,join 会过滤 b 表中不能找到匹配 a 表 join key 的全部记录。这样的话,LEFT OUTER 就使得查询结果与 WHERE 子句无关了。解决的办法是在 OUTER JOIN 时使用如下语法: SELECT a.val, b.val FROM a LEFT OUTER JOIN b ON (a.key=b.key AND b.ds='2009-07-07' AND a.ds='2009-07-07') 这一查询的结果是预先在 join 阶段过滤过的,因此不会存在上述问题。这一逻辑也能够应用于 RIGHT 和 FULL 类型的 join 中。 Join 是不能交换位置的。不管是 LEFT 仍是 RIGHT join,都是左链接的。 SELECT a.val1, a.val2, b.val, c.val FROM a JOIN b ON (a.key = b.key) LEFT OUTER JOIN c ON (a.key = c.key) www.2cto.com 先 join a 表到 b 表,丢弃掉全部 join key 中不匹配的记录,而后用这一中间结果和 c 表作 join。这一表述有一个不太明显的问题,就是当一个 key 在 a 表和 c 表都存在,可是 b 表中不存在的时候:整个记录在第一次 join,即 a JOIN b 的时候都被丢掉了(包括a.val1,a.val2和a.key),而后咱们再和 c 表 join 的时候,若是 c.key 与 a.key 或 b.key 相等,就会获得这样的结果:NULL, NULL, NULL, c.val。 LEFT SEMI JOIN 是 IN/EXISTS 子查询的一种更高效的实现。 Hive 当前没有实现 IN/EXISTS 子查询,因此你能够用 LEFT SEMI JOIN 重写你的子查询语句。LEFT SEMI JOIN 的限制是, JOIN 子句中右边的表只能在 ON 子句中设置过滤条件,在 WHERE 子句、SELECT 子句或其余地方过滤都不行。 SELECT a.key, a.value FROM a WHERE a.key in (SELECT b.key FROM B); 能够被重写为: SELECT a.key, a.val 缓存
FROM a LEFT SEMI JOIN b on (a.key = b.key)内存