JavaShuo
栏目
标签
《Baseline Needs More Love: On Simple Word-Embedding-Based Models and Associated Pooling Mechanisms》
时间 2021-01-11
标签
深度学习
机器学习
计算机视觉
自然语言处理
栏目
Microsoft Office
繁體版
原文
原文链接
出处: ACL2018 1. 贡献 本文提出在词向量上进行简单的池化操作在文本分类/匹配任务上就可以得到跟CNN/RNN相当的效果。 2. 方案 1) SWEM-aver:整个句子的信息 ) 2)SWEM-max:突出特征 ) 3)拼接SWEM-aver和SWEM-max 4 SWEM-hier(层次化) 最大和平均池化没有考虑词序,这里引入层次化pooling。先作固定窗口的平均pooling,
>>阅读原文<<
相关文章
1.
论文笔记Baseline Needs More Love:On Simple Word-Embedding-Based Models and Associated Pooling Mechanisms
2.
baseline needs more love 简单网络vs复杂网络(1)——baseline
3.
Beyond Part Models: Person Retrieval with Refined Part Pooling (and A Strong Convolutional Baseline)
4.
Beyond Part Models: Person Retrieval with Refined Part Pooling (and A Strong Convolutional Baseline)
5.
Faster, more memory efficient and more ordered dictionaries on PyPy
6.
Missing associated label more...
7.
Deep Learning Models and Code for Pose Estimation
8.
c3p0 - JDBC3 Connection and Statement Pooling
9.
DEEP DOUBLE DESCENT: WHERE BIGGER MODELS AND MORE DATA HURT
10.
【ReID】Beyond Part Models: Person Retrieval with Refined Part Pooling (and A Strong Convolutional...
更多相关文章...
•
XSL-FO simple-page-master 对象
-
XSL-FO 教程
•
W3C RDF and OWL 活动
-
W3C 教程
•
RxJava操作符(七)Conditional and Boolean
•
RxJava操作符(一)Creating Observables
相关标签/搜索
needs
pooling
baseline
mechanisms
associated
love
models
simple
models&orm
2.models
快乐工作
Microsoft Office
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
Mud Puddles ( bfs )
2.
ReSIProcate环境搭建
3.
SNAT(IP段)和配置网络服务、网络会话
4.
第8章 Linux文件类型及查找命令实践
5.
AIO介绍(八)
6.
中年转行互联网,原动力、计划、行动(中)
7.
详解如何让自己的网站/APP/应用支持IPV6访问,从域名解析配置到服务器配置详细步骤完整。
8.
PHP 5 构建系统
9.
不看后悔系列!Rocket MQ 使用排查指南(附网盘链接)
10.
如何简单创建虚拟机(CentoOS 6.10)
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
论文笔记Baseline Needs More Love:On Simple Word-Embedding-Based Models and Associated Pooling Mechanisms
2.
baseline needs more love 简单网络vs复杂网络(1)——baseline
3.
Beyond Part Models: Person Retrieval with Refined Part Pooling (and A Strong Convolutional Baseline)
4.
Beyond Part Models: Person Retrieval with Refined Part Pooling (and A Strong Convolutional Baseline)
5.
Faster, more memory efficient and more ordered dictionaries on PyPy
6.
Missing associated label more...
7.
Deep Learning Models and Code for Pose Estimation
8.
c3p0 - JDBC3 Connection and Statement Pooling
9.
DEEP DOUBLE DESCENT: WHERE BIGGER MODELS AND MORE DATA HURT
10.
【ReID】Beyond Part Models: Person Retrieval with Refined Part Pooling (and A Strong Convolutional...
>>更多相关文章<<