Java 8 API添加了一个新的抽象称为流Stream,可让你以一种声明的方式处理数据。Stream API能够极大提升Java程序员的生产力,让程序员写出高效率、干净、简洁的代码。这种风格将要处理的元素集合看做一种流, 流在管道中传输, 而且能够在管道的节点上进行处理, 好比筛选, 排序,聚合等。元素流在管道中通过中间操做(intermediate operation)的处理,最后由最终操做(terminal operation)获得前面处理的结果。java
这一次为何要系统性的总结一下 Java 8 Stream API
呢?说得简单点,咱们先不论性能,咱们就是为了 装x
,并且要让这个 x
装得再优秀一些,仅此而已!git
建立流
→ 流的中间操做
→ 流的最终操做
程序员
咱们须要把哪些元素放入流中,常见的api有:github
// 使用List建立流 list.stream() // 使用一个或多个元素建立流 Stream.of(T value) Stream.of(T... values) // 使用数组建立流 Arrays.stream(T[] array) // 建立一个空流 Stream.empty() // 两个流合并 Stream.concat(Stream<? extends T> a, Stream<? extends T> b) // 无序无限流 Stream.generate(Supplier<T> s) // 经过迭代产生无限流 Stream.iterate(final T seed, final UnaryOperator<T> f)
// 元素过滤 filter limit skip distinct // 映射 map flatmap // 排序
经过流对元素的最终操做,咱们想获得一个什么样的结果json
/** * 员工实体类 * @author Erwin Feng * @since 2020/4/27 2:10 */ public class Employee { /** 员工ID */ private Integer id; /** 员工姓名 */ private String name; /** 员工薪资 */ private Double salary; /** 构造方法、getter and setter、toString */ }
[ { "id":1, "name":"Jacob", "salary":1000 }, { "id":2, "name":"Sophia", "salary":2000 }, { "id":3, "name":"Rose", "salary":3000 }, { "id":4, "name":"Lily", "salary":4000 }, { "id":5, "name":"Daisy", "salary":5000 }, { "id":6, "name":"Jane", "salary":5000 }, { "id":7, "name":"Jasmine", "salary":6000 }, { "id":8, "name":"Jack", "salary":6000 }, { "id":9, "name":"Poppy", "salary":7000 } ]
需求:查找薪酬为5000的员工列表api
List<Employee> employees = list.stream().filter(employee -> employee.getSalary() == 5000) .peek(System.out::println) .collect(Collectors.toList()); Assert.assertEquals(2, employees.size());
需求:将薪酬大于5000的员工放到Leader对象中数组
List<Leader> leaders = list.stream().filter(employee -> employee.getSalary() > 5000).map(employee -> { Leader leader = new Leader(); leader.setName(employee.getName()); leader.setSalary(employee.getSalary()); return leader; }).peek(System.out::println).collect(Collectors.toList()); Assert.assertEquals(3, leaders.size());
需求:将多维的列表转化为单维的列表app
说明:咱们将薪酬在1000-3000的分为一个列表,4000-5000分为一个列表,6000-7000分为一个列表。函数
将这三个列表组合在一块儿造成一个多维列表。性能
List<Employee> employees = multidimensionalList.stream().flatMap(Collection::stream).collect(Collectors.toList()); Assert.assertEquals(9, employees.size());
需求:根据薪酬排序
// 薪酬从小到大排序 List<Employee> employees = list.stream().sorted(Comparator.comparing(Employee::getSalary)).peek(System.out::println).collect(Collectors.toList()); // 薪酬从大到小排序 List<Employee> employees2 = list.stream().sorted(Comparator.comparing(Employee::getSalary).reversed()).peek(System.out::println).collect(Collectors.toList());
double minValue = list.stream().mapToDouble(Employee::getSalary).min().orElse(0); Assert.assertEquals(1000, minValue, 0.0); Employee employee = list.stream().min(Comparator.comparing(Employee::getSalary)).orElse(null); assert employee != null; Assert.assertEquals(employee.getSalary(), minValue, 0.0);
double maxValue = list.stream().mapToDouble(Employee::getSalary).max().orElse(0); Assert.assertEquals(7000, maxValue, 0.0);
double sum = list.stream().mapToDouble(Employee::getSalary).sum(); double averageValue = list.stream().mapToDouble(Employee::getSalary).average().orElse(0); Assert.assertEquals(sum / list.size(), averageValue, 0.0);
// allMatch 集合中的元素都要知足条件才会返回true // 薪酬都是大于等于1000的 boolean isAllMatch = list.stream().allMatch(employee -> employee.getSalary() >= 1000); Assert.assertTrue(isAllMatch); // anyMatch 集合中只要有一个元素知足条件就会返回true // 有没有薪酬大于等于7000 boolean isAnyMatch = list.stream().anyMatch(employee -> employee.getSalary() >= 7000); Assert.assertTrue(isAnyMatch); // noneMatch 集合中没有元素知足条件才会返回true // 没有薪酬小于1000的 boolean isNoneMatch = list.stream().noneMatch(employee -> employee.getSalary() < 1000); Assert.assertTrue(isNoneMatch);
默认的 distinct()
不接收参数,是根据 Object#equals(Object)
去重。根据API介绍,这是一个有中间状态的操做。
List<Employee> employees = list.stream().distinct().collect(Collectors.toList()); Assert.assertEquals(9, employees.size());
若是咱们要根据对象中的某个属性去重的,可使用 StreamEx
// 使用StreamEx去重 List<Employee> employees2 = StreamEx.of(list).distinct(Employee::getSalary).collect(Collectors.toList()); Assert.assertEquals(7, employees2.size());
固然也可使用JDK Stream API
private static <T>Predicate<T> distinctByKey(Function<? super T, ?> keyExtractor) { Map<Object, Boolean> result = new ConcurrentHashMap<>(); return t -> result.putIfAbsent(keyExtractor.apply(t), Boolean.TRUE) == null; } List<Employee> employees3 = list.stream().filter(distinctByKey(Employee::getSalary)).collect(Collectors.toList()); Assert.assertEquals(7, employees3.size());
需求:计算薪酬总和
// 先将员工列表转换为薪酬列表 // 再计算薪酬总和 double salarySum = list.stream().map(Employee::getSalary).reduce(Double::sum).orElse(0.0); double sum = list.stream().mapToDouble(Employee::getSalary).sum(); Assert.assertEquals(salarySum, sum, 0.0);
另外,咱们也能够设定一个累加函数的标识值
double salarySum5 = list.stream().map(Employee::getSalary).reduce(1.00, Double::sum); Assert.assertEquals(salarySum5, sum + 1, 0.0);
// joining 拼接字符串 String employeeNames = list.stream().map(Employee::getName).collect(Collectors.joining(", ")); System.out.println(employeeNames); // Jacob, Sophia, Rose, Lily, Daisy, Jane, Jasmine, Jack, Poppy // 返回一个List List<String> employeeNameList = list.stream().map(Employee::getName).collect(Collectors.toList()); System.out.println(employeeNameList); // 返回一个Set Set<String> employeeNameSet = list.stream().map(Employee::getName).collect(Collectors.toSet()); System.out.println(employeeNameSet); // 返回一个Vector Vector<String> employeeNameVector = list.stream().map(Employee::getName).collect(Collectors.toCollection(Vector::new)); System.out.println(employeeNameVector); // 返回一个Map Map<Integer, String> employeesMap = list.stream().collect(Collectors.toMap(Employee::getId, Employee::getName)); System.out.println(employeesMap);
需求:薪酬为5000的员工数
不使用流
int count2 = 0; for (Employee employee : list) { if (employee.getSalary() == 5000) { count2++; } } System.out.println(count2);
使用流
long count3 = list.stream().filter(employee -> employee.getSalary() == 5000).count(); Assert.assertEquals(count3, count2);
DoubleSummaryStatistics employeeSalaryStatistics = list.stream().collect(Collectors.summarizingDouble(Employee::getSalary)); System.out.println("employee salary statistics:" + employeeSalaryStatistics); DoubleSummaryStatistics employeeSalaryStatistics2 = list.stream().mapToDouble(Employee::getSalary).summaryStatistics(); System.out.println("employee salary statistics2:" + employeeSalaryStatistics2);
{count=9, sum=39000.000000, min=1000.000000, average=4333.333333, max=7000.000000}
分红知足条件(true)和不知足条件(false)两个区
需求:找出薪酬大于5000的员工
Map<Boolean, List<Employee>> map = list.stream().collect(Collectors.partitioningBy(employee -> employee.getSalary() > 5000)); System.out.println("true:" + map.get(Boolean.TRUE)); System.out.println("false:" + map.get(Boolean.FALSE));
true:[Employee{id=7, name='Jasmine', salary=6000.0}, Employee{id=8, name='Jack', salary=6000.0}, Employee{id=9, name='Poppy', salary=7000.0}]
false:[Employee{id=1, name='Jacob', salary=1000.0}, Employee{id=2, name='Sophia', salary=2000.0}, Employee{id=3, name='Rose', salary=3000.0}, Employee{id=4, name='Lily', salary=4000.0}, Employee{id=5, name='Daisy', salary=5000.0}, Employee{id=6, name='Jane', salary=5000.0}]
需求:根据员工薪酬分组
Map<Double, List<Employee>> map = list.stream().collect(Collectors.groupingBy(Employee::getSalary)); System.out.println(map);
再举一个例子:薪酬 一> 总和(薪酬*员工数)
Map<Double, Double> map3 = list.stream().collect(Collectors.groupingBy(Employee::getSalary, Collectors.summingDouble(Employee::getSalary))); System.out.println(map3);
简单的说,就是启动多个线程计算
private static void cal(Employee employee) { try { long sleepTime = employee.getSalary().longValue(); TimeUnit.MILLISECONDS.sleep(sleepTime); logger.info("employee name: {}", employee.getName()); } catch (InterruptedException e) { e.printStackTrace(); } } list.stream().parallel().forEach(StreamTest::cal);
2020-05-15 01:47:14.231 [ForkJoinPool.commonPool-worker-4] INFO com.fengwenyi.study_stream.StreamTest - employee name: Jacob 2020-05-15 01:47:15.226 [ForkJoinPool.commonPool-worker-2] INFO com.fengwenyi.study_stream.StreamTest - employee name: Sophia 2020-05-15 01:47:16.226 [ForkJoinPool.commonPool-worker-1] INFO com.fengwenyi.study_stream.StreamTest - employee name: Rose 2020-05-15 01:47:17.226 [ForkJoinPool.commonPool-worker-3] INFO com.fengwenyi.study_stream.StreamTest - employee name: Lily 2020-05-15 01:47:18.225 [main] INFO com.fengwenyi.study_stream.StreamTest - employee name: Jane 2020-05-15 01:47:18.228 [ForkJoinPool.commonPool-worker-7] INFO com.fengwenyi.study_stream.StreamTest - employee name: Daisy 2020-05-15 01:47:19.226 [ForkJoinPool.commonPool-worker-5] INFO com.fengwenyi.study_stream.StreamTest - employee name: Jack 2020-05-15 01:47:19.228 [ForkJoinPool.commonPool-worker-6] INFO com.fengwenyi.study_stream.StreamTest - employee name: Jasmine 2020-05-15 01:47:21.234 [ForkJoinPool.commonPool-worker-4] INFO com.fengwenyi.study_stream.StreamTest - employee name: Poppy
try (PrintWriter printWriter = new PrintWriter(Files.newBufferedWriter(Paths.get(tempFilePath)))) { // 使用 try 自动关闭流 list.forEach(printWriter::println); list.forEach(employee -> printWriter.println(employee.getName())); // 将员工的姓名写到文件中 } // 从文件中读取员工的姓名 List<String> s = Files.lines(Paths.get(tempFilePath)).peek(System.out::println).collect(Collectors.toList());