spark教程(一)-集群搭建

spark 简介 

建议先阅读个人博客 大数据基础架构html

spark 一个通用的计算引擎,专门为大规模数据处理而设计,与 mapreduce 相似,不一样的是,mapreduce 把中间结果 写入 hdfs,而 spark 直接写入 内存,这使得它可以实现实时计算。java

spark 由 scala 语言开发,他可以和 scala 完美结合,同时实现了 java、python、R 等接口。node

 

搭建模式

spark 有 3 种搭建模式python

local 模式:即单机模式,这种安装加压便可,具体安装方法穿插在 Standalone 模式linux

Standalone 模式:即搭建 spark 集群,但不与其余框架集成,如 yarn,此时 spark 运行在集群中shell

基于 yarn 的 spark 集群部署:yarn 集群 + spark 集群,此时 spark 运行在 yarn 中apache

local 和 standalone 模式必须启动 spark,yarn 模式无需启动 spark浏览器

具体怎么理解这 3 种模式,后面有空我会详细讲session

 

Standalone 模式

第一步:安装环境

1. 安装java:很简单,请自行百度架构

2. 安装 hadoop 集群:具体参考个人博客 hadoop 集群搭建

  // 若是 spark 读取 hdfs 就须要 hadoop,若是只玩本地,无需这步

3. 安装 scala:spark tar 包带有 scala 依赖,因此无需专门安装

4. python2.7 以上版本:若是要使用 pyspark 才须要安装,也就是说玩 python 才须要这步

 

第二步:下载并安装

1. 官网下载 spark

下载地址 spark

注意选择 hadoop 对应的版本

 

2. 解压 tar 包

上传至集群的每一个节点,解压,设置环境变量

export SPARK_HOME=/usr/lib/spark
export PATH=.:$HADOOP_HOME/bin:$JAVA_HOME/bin:$SPARK_HOME/bin:$PATH

至此已经完成单机模式的 spark 安装

 

3. 配置 spark

进入 spark 解压目录,须要配置 conf/slaves,conf/spark-env.sh 两个文件

注意这两个文件是不存在的,须要 cp 复制一下

cp slaves.template slaves
cp spark-env.sh.template spark-env.sh

 

slaves

末尾去掉 localhost,加上如下内容

hadoop10
hadoop11
hadoop12
hadoop13

 

spark-env.sh

加上如下内容

export JAVA_HOME=/usr/lib/jvm/jre-1.8.0-openjdk.x86_64
export SPARK_MASTER_IP=hadoop1
export SPARK_MASTER_PORT=7077
export SPARK_WORKER_MEMORY=1G

设置 spark 的主节点 和 端口;

spark_worker_memory 表示计算时使用的内存,越大越好,spark 是基于内存的计算

 

4. 向其余节点远程下发配置

scp -r conf/ root@hadoop11:/usr/lib/spark
scp -r conf/ root@hadoop12:/usr/lib/spark
scp -r conf/ root@hadoop13:/usr/lib/spark

 

5. 启动 spark

cd /usr/lib/spark/sbin、
./start-all.sh

中止就是对应的 stop

 

6. 验证是否启动成功

6.1 jsp 查看进程

主节点显示 master 和 worker 两个进程

从节点显示 worker 进程

Standalone 模式显示的是 master worker,yarn 显示的不是

 

6.2 浏览器访问 http://192.168.10.10:8080/

 

第三步:操做 spark 集群

这里只作简单介绍,验证 spark 是否启动,而后长啥样便可

客户端操做 hadoop 集群的命令都在 spark 的 bin 目录下

1. spark-shell 模式  【 scala 模式】

输入命令

spark-shell

# 也能够设置参数
spark-shell --master spark://hadoop10:7077 --executor-memory 600m
[root@hadoop10 spark]# bin/spark-shell 
19/10/09 17:47:54 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
Spark context Web UI available at http://hadoop10:4040 Spark context available as 'sc' (master = local[*], app id = local-1570668484546). Spark session available as 'spark'.
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /___/ .__/\_,_/_/ /_/\_\   version 2.4.4
      /_/
         
Using Scala version 2.11.12 (OpenJDK 64-Bit Server VM, Java 1.8.0_222)

注意绿色的两句,意思是 shell 中内置了 可用的 spark context 和 spark session,名字分别为 sc 和 spark

按 :quit 退出

 

2. pyspark 模式  【python 模式】

输入命令 pyspark 便可

[root@hadoop10 spark]# bin/pyspark 
Python 2.7.12 (default, Oct  2 2019, 19:43:15) 
[GCC 4.4.7 20120313 (Red Hat 4.4.7-4)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
19/10/02 22:08:17 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /__ / .__/\_,_/_/ /_/\_\   version 2.4.4
      /_/

Using Python version 2.7.12 (default, Oct  2 2019 19:43:15)
SparkSession available as 'spark'. >>> 

注意这里只有 spark session,可是 spark context 也能够直接用 

 

若是出现 NameError: name 'memoryview' is not defined,说明 python 版本不对,2.7 及以上

若是出现未导入包什么的,请自行解决,通常是 python 没装好

 

基于 yarn 的 spark 部署

第一步:安装环境

1. 安装java:很简单,请自行百度

2. 安装 hadoop 集群:具体参考个人博客 hadoop 集群搭建;必须有,由于要用 yarn

3. 安装 scala:spark tar 包带有 scala 依赖,因此无需专门安装

4. python2.7 以上版本:若是要使用 pyspark 才须要安装,也就是说玩 python 才须要这步

 

第二步:安装 spark

spark on yarn 模式只需在 hadoop 集群的任一节点安装 spark 便可,不须要 spark 集群;

由于 spark 应用提交到 yarn 后,yarn 负责集群资源调度。

 

spark 安装参照 Standalone 模式,大体以下:

1. 配置环境变量

2. spark-env.sh 添加以下内容

YARN_CONF_DIR=/usr/lib/hadoop-2.6.5/etc/hadoop

这个地址是 hadoop yarn 的配置文件的地址

 

第三步:修改 hadoop yarn 的配置

修改 yarn-site.xml,添加以下内容

<!-- spark 部署到 yarn 上须要这两个配置 --> 
<!-- 是否启动一个线程检查每一个任务正在使用的物理内存,若是超出分配值,则直接杀掉该任务,默认为 true -->
<property>
        <name>yarn.nodemanager.pmem-check-enabled</name>
        <value>false</value>
 </property>
 
<!-- 是否启动一个线程检查每一个任务正在试用的虚拟内存,若是超出分配值,则直接杀掉该任务,默认为 true -->
<property>
        <name>yarn.nodemanager.vmem-check-enabled</name>
        <value>false</value>
 </property> 
<!-- spark 部署到 yarn 上须要这两个配置 --> 

分发到各节点

 

不配置这步可能报错,特别是分配内存较小时,如虚拟机状况下。

 

至此配置完毕,注意,无需启动 spark

 

第四步:操做 yarn 模式

spark-shell --master yarn-client    # 这种方式在 spark2.x 中被废弃,替代命令为下面这句
spark-shell --master yarn --deploy-mode client

yarn 模式 不在 spark UI 上监控,而是在 hadoop UI 上,地址为 http://192.168.10.10:8088

 

 

 

参考资料:

https://www.cnblogs.com/swordfall/p/7903678.html  安装

https://www.jianshu.com/p/5626612bf10c       安装

https://blog.csdn.net/penyok/article/details/81483527        安装

https://blog.csdn.net/chengyuqiang/article/details/77864246     spark on yarn

相关文章
相关标签/搜索