数据库中有有一张表专门存储用户的维度数据,因为随着时间的推移,用户的维度数据也可能发生变化,故每一次查看都会保存一次记录。
如今须要对数据按用户分析,但当中有大量的重复数据,仅用数据库的等值去重明显不可行。算法
MD5值的特色:
1.压缩性:任意长度的数据,算出的MD5值长度都是固定的。
2.容易计算:从原数据计算出MD5值很容易。
3.抗修改性:对原数据进行任何改动,哪怕只修改1个字节,所获得的MD5值都有很大区别。
4.强抗碰撞:已知原数据和其MD5值,想找到一个具备相同MD5值的数据(即伪造数据)是很是困难的。
根据MD5值的特色,对每条记录的维度数据内容计算MD5值,而后根据MD5值判断重复记录。
对数据入库以后利用sql直接查出重复数据,而后将重复数据移除或者标记。
至少在现阶段内存和CPU的执行效率在固定时间内是有限的,大量的数据的查重和去重处理不可能同时在内存中进行。就像外部排序算法和内部排序算法差异很大,遇到此类大量数据查重问题对算法进行设计是有必要的。sql
布隆过滤器是一种采用hash法进行查重的工具。它将每一条数据进行n次独立的hash处理,每次处理获得一个整数,总共获得n个整数。使用一个很长的数组表示不一样的整数,每一次插入操做把这n个整数对应的位置的0设置为1(若是已经被设置为1则不变)。下次查找的时候通过一样的计算,若是这几个位置都是1则说明已经存在。
布隆过滤器的优势是使用方便,由于并不将key存放进内存因此十分节省空间,多个hash算法无关,能够并发执行效率高。缺点也是显而易见的,这种算法是可能出现错误,有误判率这种概念。经过hash的次数咱们能够下降误判率,可是不能保证没有误判的状况。数据库
好比有2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。
一个数字的状态只有三种,分别为不存在,只有一个,有重复。所以,咱们只须要2bits就能够对一个数字的状态进行存储了,假设咱们设定一个数字不存在为00,存在一次01,存在两次及其以上为11。那咱们大概须要存储空间几十兆左右。接下来的任务就是遍历一次这2.5亿个数字,若是对应的状态位为00,则将其变为01;若是对应的状态位为01,则将其变为11;若是为11,,对应的转态位保持不变。
最后,咱们将状态位为01的进行统计,就获得了不重复的数字个数,时间复杂度为O(n)。数组
若是有两份50G的数据,要查重,内存4G,怎么查?
想法是先将50G的数据分别作hash%1000,分红1000个文件,理论上hash作得好那么这1000个文件的大小是差很少接近的。若是有重复,那么A和B的重复数据必定在相对同一个文件内,由于hash结果是同样的。将1000个文件分别加载进来,一一比对是否有hash重复。这种想法是先把全部数据按照相关性进行分组,相关的数据会处于一样或者接近的位置中,再将小文件进行对比。
有1千万条短信,找出重复出现最多的前10条?
能够用哈希表的方法对1千万条分红若干组进行边扫描边建散列表。第一次扫描,取首字节,尾字节,中间随便两字节做为Hash Code,插入到hash table中。并记录其地址和信息长度和重复次数,1千万条信息,记录这几个信息还放得下。同Hash Code且等长就疑似相同,比较一下。相同记录只加1次进hash table,但将重复次数加1。一次扫描之后,已经记录各自的重复次数,进行第二次hash table的处理。用线性时间选择可在O(n)的级别上完成前10条的寻找。分组后每份中的top10必须保证各不相同,可hash来保证,也可直接按hash值的大小来分类。并发
使用场景:url地址对应的数据不会变的状况,url地址可以惟一判别一条数据的状况
思路:
url存在Redis中
拿到url地址,判断url在Redis的集合中是否存在
存在:说明url地址已经被请求过了,不在请求
不存在:说明url地址没有被请求过,请求,把该url地址存入Redis的集合中工具
使用多个加密算法加密url地址,获得多个值
往对应值的位置把结果设置为1
新来的一个url地址,同样经过加密算法生成多个值
若是对应位置的值全为1,说明这个url地址已经被抓取过了
不然没有被抓取过,就把对应的位置的值设置为1加密
选择特定的字段(可以惟一标识数据的字段),使用加密算法(MD5,sha1)将字段进行加密,生成字符串,存入Redis的集合中
后续新来一条数据,一样的方式进行加密,
若是获得的字符串在Redis中存在,说明数据存在,对数据进行更新,
不然说明数据不存在,对数据进行插入。url