http://codeforces.com/contest/710/problem/Dios
You are given two arithmetic progressions: a1k + b1 and a2l + b2. Find the number of integers x such that L ≤ x ≤ R and x = a1k' + b1 = a2l' + b2, for some integers k', l' ≥ 0.
spa
The only line contains six integers a1, b1, a2, b2, L, R (0 < a1, a2 ≤ 2·109, - 2·109 ≤ b1, b2, L, R ≤ 2·109, L ≤ R).
code
Print the desired number of integers x.
ip
2 0 3 3 5 21 2 4 3 0 6 17
3 2
求[L,R]区间内有多少个整数y知足 y = k1x1+b1 且 y = k2x2+b2. (x1 x2 >= 0)
ci
首先把两条直线画到平面上,题目限制了直线斜率都大于零. 又因为 x1 x2 >= 0.
因此y的区间能够进一步限制为 [max(L, max(b1,b2)), R];
问题就变为在这个新区间里找使得两个式子相等的"整点"个数了.
这里能够把两个式子经过拓展中国剩余定理(由于不互质)合并成一个式子, 而后计算区间内的解的个数便可.
注意:可能两式子不能合并,直接输出0; 正确计算区间内的解的个数(见注释).
比赛作的时候只想到了拓展中国剩余定理这里,而后想的是b不必定小于k因此不算是模方程,觉得不能作.
实际上(拓展)中国剩余定理在处理同余模方程组的时候不要求余数小于模数.
get
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #include <queue> #include <map> #include <set> #include <stack> #include <vector> #include <list> #define LL long long #define eps 1e-8 #define maxn 10000100 #define mod 100000007 #define inf 0x3f3f3f3f3f3f3f3f #define mid(a,b) ((a+b)>>1) #define IN freopen("in.txt","r",stdin); using namespace std; LL x,y,gcd; void ex_gcd(LL a,LL b) { if(!b) {x=1;y=0;gcd=a;} else {ex_gcd(b,a%b);LL temp=x;x=y;y=temp-a/b*y;} } LL n,m[2],a[2]; //x%m=a LL cur, T; /*模线性方程组--不互质中国剩余定理*/ int ex_China() { LL m1,m2,n1,n2,x0; m1=m[0];n1=a[0]; for(int i=1; i<n; i++) { m2=m[i]; n2=a[i]; ex_gcd(m1,m2); if((n2-n1)%gcd) return -1; LL tmp=m2/gcd; x0=(x*((n2-n1)/gcd)%tmp+tmp)%tmp; n1=n1+x0*m1; m1=m1/gcd*m2; } n1=(n1+m1)%m1; cur = n1; T = m1; return T; } int main(int argc, char const *argv[]) { //IN; n = 2; cin >> m[0] >> a[0] >> m[1] >> a[1]; LL L,R; cin >> L >> R; L = max(max(a[0], a[1]), L); int ret = ex_China(); LL ans = 0; if(ret == -1) { /*特判不能合并的方程组*/ printf("0\n"); return 0; } if(cur >= L) { /*找一个合适的起点,分别计算L-1和R到这个点之间有多少个解*/ cur -= ((cur-L)/T + 1) * T; } if(L <= R) { ans = (R - cur) / T - (L - 1 - cur) / T; } printf("%I64d\n", ans); return 0; }