【前言】对于气象专业的小学生来讲,风场是预报重要的参考数据,咱们所知的风羽有四种:短线表明风速2m/s,长线表明风速4m/s,空心三角表明风速20m/s,实心三角表明风速50m/s。而matplotlib的风羽只有短线、长线、三角三种,而这里的三角不分空心实心,可是可经过改变风羽颜色为白色使三角变为空心形状,虽然这三种能够自定义各自表明的风速,可是仍与咱们的使用习惯不符,即便把三角设成20m/s,本来一个实心三角就能表示的50m/s的风在matplotlib中须要两个三角外加两条长线一条短线。为了迎合预报员的需求,我在研究了matplotlib的风场函数barbs()的源代码quiver.py文件后,对quiver.py作了适当的调整,使得matplotlib也有了空心三角和实心三角之分。python
barbs
的使用barb(X, Y, U, V,, **kw)
X:风场数据X坐标
Y:风场数据Y坐标
U:风的水平方向份量
V:风的垂直方向份量微信
''' Demonstration of wind barb plots ''' import matplotlib.pyplot as plt import numpy as np x = np.linspace(-5, 5, 5) X, Y = np.meshgrid(x, x) U, V = 12*X, 12*Y data = [(-1.5, .5, -6, -6),(1, -1, -46, 46),(-3, -1, 11, -11),(1, 1.5, 80, 80),(0.5, 0.25, 25, 15),(-1.5, -0.5, -5, 40)] data = np.array(data, dtype=[('x', np.float32), ('y', np.float32), ('u', np.float32), ('v', np.float32)]) # Default parameters, uniform grid ax = plt.subplot(2, 2, 1) ax.barbs(X, Y, U, V) # Arbitrary set of vectors, make them longer and change the pivot point #(point around which they're rotated) to be the middle ax = plt.subplot(2, 2, 2) ax.barbs(data['x'], data['y'], data['u'], data['v'], length=8, pivot='middle') # Showing colormapping with uniform grid. Fill the circle for an empty barb, # don't round the values, and change some of the size parameters ax = plt.subplot(2, 2, 3) ax.barbs(X, Y, U, V, np.sqrt(U*U + V*V), fill_empty=True, rounding=False,sizes=dict(emptybarb=0.25, spacing=0.2, height=0.3)) # Change colors as well as the increments for parts of the barbs ax = plt.subplot(2, 2, 4) ax.barbs(data['x'], data['y'], data['u'], data['v'], flagcolor='r',barbcolor=['b', 'g'], barb_increments=dict(half=10, full=20, flag=100),flip_barb=True) plt.show()
class Barbs()
class Barbs(mcollections.PolyCollection): @docstring.interpd def __init__(self, ax, *args, **kw): '...' def _find_tails(self, mag, rounding=True, half=5, full=10, flag=50): '...' def _make_barbs(self, u, v, nflags, nbarbs, half_barb, empty_flag, length,pivot, sizes, fill_empty, flip): '...' def set_UVC(self, U, V, C=None): '...' def set_offsets(self, xy): '...'
__init__
、_find_tails
、_make_barbs
、set_UVC
、set_offsets
。__init__
@docstring.interpd def __init__(self, ax, *args, **kw): """ The constructor takes one required argument, an Axes instance, followed by the args and kwargs described by the following pylab interface documentation: %(barbs_doc)s """ self._pivot = kw.pop('pivot', 'tip') self._length = kw.pop('length', 7) barbcolor = kw.pop('barbcolor', None) flagcolor = kw.pop('flagcolor', None) self.sizes = kw.pop('sizes', dict()) self.fill_empty = kw.pop('fill_empty', False) self.barb_increments = kw.pop('barb_increments', dict()) self.rounding = kw.pop('rounding', True) self.flip = kw.pop('flip_barb', False) transform = kw.pop('transform', ax.transData) # Flagcolor and and barbcolor provide convenience parameters for # setting the facecolor and edgecolor, respectively, of the barb # polygon. We also work here to make the flag the same color as the # rest of the barb by default if None in (barbcolor, flagcolor): kw['edgecolors'] = 'face' if flagcolor: kw['facecolors'] = flagcolor elif barbcolor: kw['facecolors'] = barbcolor else: # Set to facecolor passed in or default to black kw.setdefault('facecolors', 'k') else: kw['edgecolors'] = barbcolor kw['facecolors'] = flagcolor # Parse out the data arrays from the various configurations supported x, y, u, v, c = _parse_args(*args) self.x = x self.y = y xy = np.hstack((x[:, np.newaxis], y[:, np.newaxis])) # Make a collection barb_size = self._length ** 2 / 4 # Empirically determined mcollections.PolyCollection.__init__(self, [], (barb_size,), offsets=xy, transOffset=transform, **kw) self.set_transform(transforms.IdentityTransform()) self.set_UVC(u, v, c)
__init__()
方法为初始化方法,此方法中flagcolor
、barbcolor
为设置风羽颜色的关键字,中间的说明文字提示颜色设置是针对全部的风羽的,因此经过颜色设置达不到风羽中既有空心白色三角又有实心黑色三角。初始化方法中在对一些参数进行了初始化赋值后执行了set_UVC()
方法,因此咱们顺着这个set_UVC()
方法往下继续读。set_UVC()
def set_UVC(self, U, V, C=None): self.u = ma.masked_invalid(U, copy=False).ravel() self.v = ma.masked_invalid(V, copy=False).ravel() if C is not None: c = ma.masked_invalid(C, copy=False).ravel() x, y, u, v, c = delete_masked_points(self.x.ravel(), self.y.ravel(), self.u, self.v, c) else: x, y, u, v = delete_masked_points(self.x.ravel(), self.y.ravel(), self.u, self.v) magnitude = np.hypot(u, v) flags, emptyflags,barbs, halves, empty = self._find_tails(magnitude, self.rounding, **self.barb_increments) # Get the vertices for each of the barbs plot_barbs = self._make_barbs(u, v, flags, emptyflags,barbs, halves, empty, self._length, self._pivot, self.sizes, self.fill_empty, self.flip) self.set_verts(plot_barbs) # Set the color array if C is not None: self.set_array(c) # Update the offsets in case the masked data changed xy = np.hstack((x[:, np.newaxis], y[:, np.newaxis])) self._offsets = xy self.stale = True
_find_tails
和_make_barbs
。_make_barbs
的输入为_find_tails
的输出,_find_tails
的输入中有一个为magnitude = np.hypot(u, v)
,np.hypot()
为勾股定理方法,所以可知magnitude
为风速。_find_tails
def _find_tails(self, mag, rounding=True, half=5, full=10, flag=50): ''' Find how many of each of the tail pieces is necessary. Flag specifies the increment for a flag, barb for a full barb, and half for half a barb. Mag should be the magnitude of a vector (i.e., >= 0). This returns a tuple of: (*number of flags*, *number of barbs*, *half_flag*, *empty_flag*) *half_flag* is a boolean whether half of a barb is needed, since there should only ever be one half on a given barb. *empty_flag* flag is an array of flags to easily tell if a barb is empty (too low to plot any barbs/flags. ''' # If rounding, round to the nearest multiple of half, the smallest # increment if rounding: mag = half * (mag / half + 0.5).astype(np.int) num_flags = np.floor(mag / flag).astype(np.int) mag = np.mod(mag, flag) num_barb = np.floor(mag / full).astype(np.int) mag = np.mod(mag, full) half_flag = mag >= half empty_flag = ~(half_flag | (num_flags > 0) | (num_emptyflags > 0) |(num_barb > 0)) return num_flags,num_barb, half_flag, empty_flag
_make_barbs
def _make_barbs(self, u, v, nflags, nbarbs, half_barb, empty_flag, length, pivot, sizes, fill_empty, flip): ''' This function actually creates the wind barbs. *u* and *v* are components of the vector in the *x* and *y* directions, respectively. *nflags*, *nbarbs*, and *half_barb*, empty_flag* are, *respectively, the number of flags, number of barbs, flag for *half a barb, and flag for empty barb, ostensibly obtained *from :meth:`_find_tails`. *length* is the length of the barb staff in points. *pivot* specifies the point on the barb around which the entire barb should be rotated. Right now, valid options are 'head' and 'middle'. *sizes* is a dictionary of coefficients specifying the ratio of a given feature to the length of the barb. These features include: - *spacing*: space between features (flags, full/half barbs) - *height*: distance from shaft of top of a flag or full barb - *width* - width of a flag, twice the width of a full barb - *emptybarb* - radius of the circle used for low magnitudes *fill_empty* specifies whether the circle representing an empty barb should be filled or not (this changes the drawing of the polygon). *flip* is a flag indicating whether the features should be flipped to the other side of the barb (useful for winds in the southern hemisphere. This function returns list of arrays of vertices, defining a polygon for each of the wind barbs. These polygons have been rotated to properly align with the vector direction. ''' # These control the spacing and size of barb elements relative to the # length of the shaft spacing = length * sizes.get('spacing', 0.125) full_height = length * sizes.get('height', 0.4) full_width = length * sizes.get('width', 0.25) empty_rad = length * sizes.get('emptybarb', 0.15) # Controls y point where to pivot the barb. pivot_points = dict(tip=0.0, middle=-length / 2.) # Check for flip if flip: full_height = -full_height endx = 0.0 endy = pivot_points[pivot.lower()] # Get the appropriate angle for the vector components. The offset is # due to the way the barb is initially drawn, going down the y-axis. # This makes sense in a meteorological mode of thinking since there 0 # degrees corresponds to north (the y-axis traditionally) angles = -(ma.arctan2(v, u) + np.pi / 2) # Used for low magnitude. We just get the vertices, so if we make it # out here, it can be reused. The center set here should put the # center of the circle at the location(offset), rather than at the # same point as the barb pivot; this seems more sensible. circ = CirclePolygon((0, 0), radius=empty_rad).get_verts() if fill_empty: empty_barb = circ else: # If we don't want the empty one filled, we make a degenerate # polygon that wraps back over itself empty_barb = np.concatenate((circ, circ[::-1])) barb_list = [] for index, angle in np.ndenumerate(angles): # If the vector magnitude is too weak to draw anything, plot an # empty circle instead if empty_flag[index]: # We can skip the transform since the circle has no preferred # orientation barb_list.append(empty_barb) continue poly_verts = [(endx, endy)] offset = length # Add vertices for each flag for i in range(nflags[index]): # The spacing that works for the barbs is a little to much for # the flags, but this only occurs when we have more than 1 # flag. if offset != length: offset += spacing / 2. poly_verts.extend( [[endx, endy + offset], [endx + full_height, endy - full_width / 2 + offset], [endx, endy - full_width + offset]]) offset -= full_width + spacing # Add vertices for each barb. These really are lines, but works # great adding 3 vertices that basically pull the polygon out and # back down the line for i in range(nbarbs[index]): poly_verts.extend( [(endx, endy + offset), (endx + full_height, endy + offset + full_width / 2), (endx, endy + offset)]) offset -= spacing # Add the vertices for half a barb, if needed if half_barb[index]: # If the half barb is the first on the staff, traditionally it # is offset from the end to make it easy to distinguish from a # barb with a full one if offset == length: poly_verts.append((endx, endy + offset)) offset -= 1.5 * spacing poly_verts.extend( [(endx, endy + offset), (endx + full_height / 2, endy + offset + full_width / 4), (endx, endy + offset)]) # Rotate the barb according the angle. Making the barb first and # then rotating it made the math for drawing the barb really easy. # Also, the transform framework makes doing the rotation simple. poly_verts = transforms.Affine2D().rotate(-angle).transform( poly_verts) barb_list.append(poly_verts) return barb_list
poly_verts
transform
方法将关键点坐标列表中的各个关键点依次用黑线链接起来,最终将风羽风向杆绘制出来spacing
:风羽上短线长线以及三角间的距离full_height
:三角的高度full_width
:三角的宽度endx
:风羽绘制的起始点x坐标endy
:风羽绘制的起始点y坐标angles
:风向杆角度poly_verts
:绘制风羽风向杆的关键点列表offset
:绘制完一个三角或线后下一个三角或线的关键起始坐标poly_verts = [(endx, endy)] offset = length # Add vertices for each flag for i in range(nflags[index]): # The spacing that works for the barbs is a little to much for # the flags, but this only occurs when we have more than 1 # flag. if offset != length: offset += spacing / 2. poly_verts.extend( [[endx, endy + offset], [endx + full_height, endy - full_width / 2 + offset], [endx, endy - full_width + offset]]) offset -= full_width + spacing
这一段是绘制风羽的主要代码,利用图片的形式说明
app
在了解了风羽的绘制过程后,发现能够经过增长关键点直接绘制实心三角,经过原绘制方法绘制空心三角。ide
# Add vertices for each flag for i in range(nflags[index]): # The spacing that works for the barbs is a little to much for # the flags, but this only occurs when we have more than 1 # flag. if offset != length: offset += spacing / 2. poly_verts.extend( [[endx, endy + offset], [endx + full_height/4, endy - full_width / 8 + offset], [endx, endy - full_width / 8 + offset], [endx + full_height/4, endy - full_width / 8 + offset], [endx + full_height/2, endy - full_width / 4 + offset], [endx, endy - full_width / 4 + offset], [endx + full_height/2, endy - full_width / 4 + offset], [endx + 3*full_height/4, endy - 3*full_width / 8 + offset], [endx, endy - 3*full_width / 8 + offset], [endx + 3*full_height/4, endy - 3*full_width / 8 + offset], [endx + full_height, endy - full_width / 2 + offset], [endx,endy-full_width/2+offset], [endx + full_height, endy - full_width / 2 + offset], [endx + 3*full_height/4, endy - 5*full_width / 8 + offset], [endx, endy - 5*full_width / 8 + offset], [endx + 3*full_height/4, endy - 5*full_width / 8 + offset], [endx + full_height/2, endy - 3*full_width / 4 + offset], [endx, endy - 3*full_width / 4 + offset], [endx + full_height/2, endy - 3*full_width / 4 + offset], [endx + full_height/4, endy - 7*full_width / 8 + offset], [endx, endy - 7*full_width / 8 + offset], [endx + full_height/4, endy - 7*full_width / 8 + offset], [endx, endy - full_width + offset]]) offset -= full_width + spacing
实心三角绘制示意图
函数
def _make_barbs(self, u, v, nfullflags, nflags,nbarbs, half_barb, empty_flag, length,pivot, sizes, fill_empty, flip): '...'
def _find_tails(self, mag, rounding=True, half=2, full=4, flag=20,fullflag=50): ''' Find how many of each of the tail pieces is necessary. Flag specifies the increment for a flag, barb for a full barb, and half for half a barb. Mag should be the magnitude of a vector (i.e., >= 0). This returns a tuple of: (*number of flags*, *number of barbs*, *half_flag*, *empty_flag*) *half_flag* is a boolean whether half of a barb is needed, since there should only ever be one half on a given barb. *empty_flag* flag is an array of flags to easily tell if a barb is empty (too low to plot any barbs/flags. ''' # If rounding, round to the nearest multiple of half, the smallest # increment if rounding: mag = half * (mag / half + 0.5).astype(np.int) num_fullflags = np.floor(mag / fullflag).astype(np.int) mag = np.mod(mag, fullflag) num_flags = np.floor(mag / flag).astype(np.int) mag = np.mod(mag, flag) num_barb = np.floor(mag / full).astype(np.int) mag = np.mod(mag, full) half_flag = mag >= half empty_flag = ~(half_flag | (num_flags > 0) | (num_fullflags > 0) |(num_barb > 0)) return num_fullflags,num_flags,num_barb, half_flag, empty_flag
set_UVC
中相关方法使用fullflags, flags,barbs, halves, empty = self._find_tails(magnitude, self.rounding, **self.barb_increments) # Get the vertices for each of the barbs plot_barbs = self._make_barbs(u, v, fullflags, flags,barbs, halves, empty, self._length, self._pivot, self.sizes, self.fill_empty, self.flip)
import matplotlib.pyplot as plt fig=plt.figure() ax=fig.add_subplot(111); ax.axis([-1,1,-1,1]) ax.set_xticks([]) ax.set_yticks([]) ax.barbs(0,0,30*1.5,40*1.5,length=8,linewidth=0.5) plt.show()
经过本次实践一方面解决了本身实际问题,另外一方面锻炼了本身阅读代码的能力,是一次很重要的学习过程,为个人Python之路打下坚实基础。学习
想观看Matplotlib教学视频,了解更多Matplotlib实用技巧可关注测试
微信公众帐号: MatplotlibClass
ui
今日头条号:Matplotlib小讲堂
this