目前PIL的官方最新版本为1.1.7,支持的版本为python 2.5, 2.6, 2.7,并不支持python3,但有高手把它从新编译生成python3下可安装的exe了。这一非官方下载地址 http://www.lfd.uci.edu/~gohlke/pythonlibs/#pil python
或者直接点下面:算法
PIL-1.1.7.win32-py3.2.exe [994 KB] [Python 3.2] [32 bit] [Jul 03, 2012]app
PIL-1.1.7.win32-py3.3.exe [988 KB] [Python 3.3b1] [32 bit] [Jul 03, 2012]ide
最近在作一件比较 evil 的事情——验证码识别,以此来学习一些新的技能。由于我是初学,对图像处理方面就不太了解了,欲要利吾事,必先利吾器,既然只是作一下实验,那用 Python 来做原型开发再好不过了。在 Python 中,比较经常使用的图像处理库是 PIL(Python Image Library),当前版本是 1.1.7 ,用起来很是方便。你们能够在 http://www.pythonware.com/products/pil/index.htm 下载和学习。函数
在这里,我主要是介绍一下作图像识别时可能会用到的一些 PIL 提供的功能,好比图像加强、还有滤波之类的。最后给出使用 Python 作图像处理与识别的优点与劣势。性能
基本图像处理学习
使用 PIL 以前须要 import Image 模块spa
注意:在python3中,请使用from PIL import Image,不要使用import Image.net
import Image #python2orm
from PIL import Image #python3
而后你就可使用Image.open(‘xx.bmp’) 来打开一个位图文件进行处理了。打开文件你不用担忧格式,也不用了解格式,不管什么格式,都只要把文件名丢给 Image.open 就能够了。真所谓 bmp、jpg、png、gif……,一个都不能少。
img = Image.open(‘origin.png’) # 获得一个图像的实例对象 img
图 1原图
图像处理中,最基本的就是色彩空间的转换。通常而言,咱们的图像都是 RGB 色彩空间的,但在图像识别当中,咱们可能须要转换图像到灰度图、二值图等不一样的色彩空间。 PIL 在这方面也提供了极完备的支持,咱们能够:
new_img = img.convert(‘L’)
把 img 转换为 256 级灰度图像, convert() 是图像实例对象的一个方法,接受一个 mode 参数,用以指定一种色彩模式,mode 的取值能够是以下几种:
· 1 (1-bit pixels, black and white, stored with one pixel per byte)
· L (8-bit pixels, black and white)
· P (8-bit pixels, mapped to any other mode using a colour palette)
· RGB (3x8-bit pixels, true colour)
· RGBA (4x8-bit pixels, true colour with transparency mask)
· CMYK (4x8-bit pixels, colour separation)
· YCbCr (3x8-bit pixels, colour video format)
· I (32-bit signed integer pixels)
· F (32-bit floating point pixels)
怎么样,够丰富吧?其实如此之处,PIL 还有限制地支持如下几种比较少见的色彩模式:LA (L with alpha), RGBX (true colour with padding) and RGBa (true colour with premultiplied alpha)。
下面看一下 mode 为 ‘1’、’L’、’P’时转换出来的图像:
图 2 mode = '1'
图 3 mode = 'L'
图 4 mode = 'P'
convert() 函数也接受另外一个隐含参数 matrix,转换矩阵 matrix 是一个长度为4 或者16 tuple。下例是一个转换 RGB 空间到 CIE XYZ 空间的例子:
rgb2xyz = (
0.412453, 0.357580, 0.180423, 0,
0.212671, 0.715160, 0.072169, 0,
0.019334, 0.119193, 0.950227, 0 )
out = im.convert("RGB", rgb2xyz)
除了完备的色彩空间转换能力外, PIL 还提供了resize()、rotate()等函数以得到改变大小,旋转图片等几何变换能力,在图像识别方面,图像实例提供了一个 histogram() 方法来计算直方图,很是方便实用。
图像加强
图像加强一般用以图像识别以前的预处理,适当的图像加强可以使得识别过程达到事半功倍的效果。 PIL 在这方面提供了一个名为 ImageEnhance 的模块,提供了几种常见的图像加强方案:
import ImageEnhance
enhancer = ImageEnhance.Sharpness(image)
for i in range(8):
factor = i / 4.0
enhancer.enhance(factor).show("Sharpness %f" % factor)
上面的代码便是一个典型的使用 ImageEnhance 模块的例子。 Sharpness 是 ImageEnhance 模块的一个类,用以锐化图片。这一模块主要包含以下几个类:Color、Brightness、Contrast和Sharpness。它们都有一个共同的接口 .enhance(factor) ,接受一个浮点参数 factor,标示加强的比例。下面看看这四个类在不一样的 factor 下的效果
图 5 使用Color 进行色彩加强,factor 取值 [0, 4],步进 0.5
图 6 用 Birghtness 加强亮度,factor取值[0,4],步进0.5
图 7用 Contrast 加强对比度, factor 取值 [0,4],步进0.5
图 8用 Sharpness 锐化图像,factor取值 [0,4],步进0.5
图像 Filter
PIL 在 Filter 方面的支持是很是完备的,除常见的模糊、浮雕、轮廓、边缘加强和平滑,还有中值滤波、ModeFilter等,简直方便到能够作本身作一个Photoshop。这些 Filter 都放置在 ImageFilter 模块中,ImageFilter主要包括两部份内容,一是内置的 Filter,如 BLUR、DETAIL等,另外一部分是 Filter 函数,能够指定不一样的参数得到不一样的效果。示例以下:
import ImageFilter
im1 = im.filter(ImageFilter.BLUR)
im2 = im.filter(ImageFilter.MinFilter(3))
im3 = im.filter(ImageFilter.MinFilter()) # same as MinFilter(3)
能够看到 ImageFilter 模块的使用很是简单,每个 Filter 都只须要一行代码就可调用,开发效率很是高。
图 9使用 BLUR
图 10使用 CONTOUR
图 11使用 DETAIL
图 12使用 EMBOSS
图 13使用 EDGE_ENHANCE
图 14使用 EDGE_ENHANCE_MORE
图 15使用 FIND_EDGES
图 16使用 SHARPEN
图 17使用 SMOOTH
图 18使用 SMOOTH_MORE
以上是几种内置的 Filter 的效果图,除此以外, ImageFilter 还提供了一些 Filter 函数,下面咱们来看看这些能够经过参数改变行为的 Filter 的效果:
图 19使用 Kernel(),参数:size = (3, 3), kernel = (0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5)
图 20使用 MaxFilter,默认参数
图 21使用 MinFilter,默认参数
图 22使用 MedianFilter,默认参数
图 23使用 ModeFilter,参数 size = 3
图 24使用 RankFilter,参数 size = 3, rank = 3
小结
到此,对 PIL 的介绍就告一段落了。总的来讲,对于图像处理和识别,PIL 内建了强大的支持,从各类加强算法到 Filter ,都让人没法怀疑使用 Python 的可行性。 Python惟一的劣势在于执行时间过慢,特别是当实现一些计算量大的算法时候,须要极强的耐心。我曾用 Hough Transform(霍夫变换)来查找图像中的直线,纯 Python 的实现处理一个 340 * 100 的图片也要花去数秒时间(P4 3.0G + 1G memory)。但使用 PIL 无需关注图像格式、内建的图像加强算法和 Filter 算法,这些优势使 Python 适合用于构造原型和进行实验,在这两方面Python 比 matlab 更加方便。商业的图像识别产品开发,能够考虑已经被 boost accepted的来自 adobe 的开源 C++ 库 gil,能够兼顾执行性能和开发效率。
原文:http://blog.csdn.net/lanphaday/article/details/1852726