底电流在手机飞行模式下调试。每一个平台的底电流数据可能不同,具体能够参考release出来的Current Consumption Data文档或者release note。通常状况下的底电流参考数据上限是:node
底电流在手机飞行模式下调试。每一个平台的底电流数据可能不同,具体能够参考release出来的Current Consumption Data文档或者release note。通常状况下的底电流参考数据上限是:android
512M RAM < 1.5mA; 1G RAM < 2mA; 2G RAM < 2.6mAshell
保证RF的PA、Antenna switch、Tuner、APT、GPIO工做在正常状态网络
开启飞行模式、关闭GPS、关闭自动旋转屏幕、关闭自动亮度调节、关闭其余特效效果设置app
开启飞行模式,能够基本避免蓝牙、wifi、NFC、网络、FM等的通常影响;ide
关闭GPS,能够基本排除开启GPS对底电流的影响;函数
关闭自动旋转屏幕,能够基本排除sensor的影响;测试
关闭自动亮度调节,能够基本排除距离感应到的影响;优化
关闭其余特效效果设置,如指纹识别、黑屏手势、智能体感、手势隔空操做。。。。。。ui
修改device/qcom//AndroidBoard.mk。若是KERNEL_DEFCONFIG := _defconfig,那么改为KERNEL_DEFCONFIG := -perf_defconfig
同时,kernel代码改用/kernel/arch/arm/configs/-perf_defconfig
是平台名称或者项目名称
/system/app/Logkit.apk /system/app/com.qualcomm.qlogcat.apk /system/xbin/qlogd
在设置-->应用,禁用正在运行的应用
adb shell top
查看CPU占用,去掉在休眠模式下CPU占用大于0的进程。kill掉该进程,若kill不掉则rm掉相关应用。对于占用CPU高的kwork,须要查找驱动缘由。
手机连上安捷伦电源,手机开机,而后让手机进入待机状态。手动移除TP、LCM、前camera、后camera、sensor、SD卡、SIM卡等能够手动移除的外围器件,同时观察并记录底电流变化。
# mount -o rw,remount -t vfat /dev/block/bootdevice/by-name/modem # cd /firmware/image # rm wcnss.* # reboot
或者
#lsmod #rmmod WLAN
移除其余能够移除的芯片(sensor、NFC。。。)
在kernel/arch/arm/configs/-perf_defconfig中把sensor、TP、LCM、camera等的驱动模块移除;
或者在对应驱动的Makefile里面,移除驱动代码
而后编译bootimage,烧入手机观察底电流变化
将不用的GPIO置为输入、拉低;配置成SPI、I2C的GPIO,若不用,置为悬空
在boot_images/core/systemdrivers/tlmm/config/platform/TLMMChipset.xml
,修改GPIO配置。该处配置GPIO的初始状态,驱动有可能会修改GPIO。
对比项目原理图与平台参考原理图,项目原理图中多出的NC GPIO要处理掉。
须要跟CE确认。通常以下:
1027 = 0 1895 = 0 1892 = 0 1962 = 0 4679 = 16 4201 = 0 3851 = 0 3852 = 6 7157 = 1 69745 rxd_enable = 0 WCDMA NV: NV3581 = 0 NV3852 = 6
对比项目原理图与平台参考原理图,排查硬件不同的GPIO、LDO、总线配置。
量测各GPIO、LDO、I2C在休眠时候的电压,需用万用表准确测量。
休眠时各路I2C GPIO的电压是多少v,用万用表准确测量。
若是条件容许,测量全部LDO在休眠前和休眠后的准确电压。
对于LDO,调试方法以下:
(1)adb shell关闭LDO
如关闭L3:
cd /sys/kernel/debug/regulator/8916_l3/ echo 0 > enable
(2)LDO太多设备用到,不适合用adb shell来关。能够这样调试:
cat /sys/kernel/debug/regulator/8916_l6/consumers shell@msm8916_32:/sys/kernel/debug/regulator/8916_l6 $ cat consumers Device-Supply EN Min_uV Max_uV load_uA 0-000c-vio Y 1800000 1800000 0 0-0068-vi2c N 1800000 1800000 0 5-0038-vcc_i2c Y 1800000 1800000 0 1a98000.qcom,mdss_dsi-vddio N 1800000 1800000 100 1a98300.qcom,mdss_dsi_pll-vddio N 1800000 1800000 100 8916_l6 N 0 0 0
这样就能够看到是哪些设备请求了LDO6。而后 找到对应的代码,在休眠时关掉LDO,唤醒时再打开。
0-000c: 挂在I2C0上地址为0xc 5-0038: 挂在I2C0上地址为0x38
查看这两个设备的驱动代码是否有执行regulator_enable。
(3)经过寄存器地址关闭LDO
如LDO6的地址是0x14546,则关闭方法是:
# cd /sys/kernel/debug/spmi/spmi-0 # echo 0x14546 > address # echo 1 > count # cat data 能够读寄存器 # echo 0x00 > data 关LDO6
(4)关闭MPP
在休眠前关闭MPP一、MPP二、MPP三、MPP4
如PM8916的寄存器地址分别是0xA04六、0xA14六、0xA24六、0xA346
在关闭前先cat data以查看原来的值。
GPIO状态读取的方法以下:
(1)GPIO dump
为了获得休眠时的GPIO状态,增长下面的打印:
rpm_proc/core/power/sleep/src/lpr_definition_uber.c #include "tlmm_hwio.h" void deep_sleep_enter(void) { uint64 sleep_duration; ... SWEVENT(SLEEP_DEEP_SLEEP_ENTER_COMPLETE, sleep_mode.deep_sleep_mode, sleep_duration); // For test { int num; int i=11; volatile uint32 cfg ,inout, val; num = 122; //8916 only. Need modify for 8974/8x10/8x26 etc. cfg = *(volatile uint32*)HWIO_TLMM_GPIO_CFGn_ADDR(i); //(0x61000000 + i * 0x1000) inout = *(volatile uint32*)HWIO_TLMM_GPIO_IN_OUTn_ADDR(i);//(0x61000004 + i * 0x1000) val = ((cfg << 16)&0xffff0000) | (inout&0xffff); SWEVENT(SLEEP_GPIO_DUMP, i, val); } mpm_sw_done(sleep_mode.deep_sleep_mode, sleep_duration); } while(FALSE); }
增长for test下面这一段代码。
而后再修改:
rpm_proc\core\power\sleep\build\SConscript if 'USES_QDSS_SWE' in env: QDSS_IMG = ['QDSS_EN_IMG'] events = [['SLEEP_DEEP_SLEEP_ENTER=320','deep sleep enter. (sleep mode: %d) (count: %d)'], ['SLEEP_DEEP_SLEEP_EXIT','deep sleep exit (sleep mode: %d)'], ['SLEEP_NO_DEEP_SLEEP','bail early from deep sleep. (sleep mode: %d) (reason: %d)'], ['SLEEP_RPM_HALT_ENTER','rpm halt enter'], ['SLEEP_RPM_HALT_EXIT','rpm halt exit'], ['SLEEP_MPM_INTS','pending mpm interrupts at wakeup: (interrupt_status_1 %d), (interrupt_status_2 %d)'], ['SLEEP_DEEP_SLEEP_ENTER_COMPLETE','deep sleep exit complete (sleep mode: %d)'], ['SLEEP_DEEP_SLEEP_EXIT_COMPLETE','deep sleep exit (sleep mode: %d)'], ['SLEEP_MPM_WAKEUP_TIME','mpm wake up time (wakeup time: 0x%0.8x%0.8x)'], ['SLEEP_GPIO_DUMP','gpio [%d] configuration is %d'], ['SLEEP_EVENT_LAST=383','sleep last event placeholder']
增长SLEEP_GPIO_DUMP这一项。
编译烧写rpm.mbn。
让机器休眠,进入download,抓dump,而后将以下日志发给平台技术支持分析。
CODERAM.bin
MSGRAM.bin
DATARAM.bin
以及新编译出来的RPM_AAAAANAZR.elf。
在RPM可能不是很方便,也能够用busybox来读取寄存器,例如读GPIO11:
Physical Address for GPIO_CFG11 = 0x100B000 root@android:/data/busybox # ./busybox devmem 0x100B000 32 ./busybox devmem 0x100B000 32 0x00000203 GPIO_PULL = "11" PULL_UP FUNC_SEL = "0000" FUNCTION GPIO DRV_STRENGTH = "000" DRV_2_MA GPIO_OE = "1" Output Enable
抓rpm dump,而后把log提供给平台技术支持。
方法以下:
(1)ps_hold接地
在休眠状态下,接ps_hold到地少于200mS,机器会进入紧急下载状态,插入USB,QPST会自动获得memory dump,而后上传如下几个文件:
CODERAM.bin
MSGRAM.bin
DATARAM.bin
以及RPM_AAAAANAZR.elf(必须与机器的编译时间一致匹配的elf)
(2)改reset为download key
发这些命令改reset为download key:
# cd /sys/kernel/debug/spmi/spmi-0 # echo 0x844 > address # echo 4 > count # cat data 00840 -- -- -- -- 0F 07 04 00 # echo 0x00 0x00 0x01 0x00 > data # cat data 00840 -- -- -- -- 00 00 01 00 # echo 0x00 0x00 0x01 0x80 > data # cat data 00840 -- -- -- -- 00 00 01 80
而后长按下键,会进入download。以后抓取log方法同上。
若是进不了download,须要确认:
CONFIG_MSM_DLOAD_MODE=y
另外也有可能与nv 4399和905有关系。
检查rpm_stats是否进入vdd min或者xo/no shutdown。使用下面的命令检查rpm lower power mode count:
cat /sys/kernel/debug/rpm_stats
若是vmin的count是0,则代表设备历来没有进入vdd min;non-zero则说明设备进入过vdd_min。
RPM Mode: xosd count:0 time in last mode(msec):0 time since last mode(sec):794 actual last sleep(msec):0 RPM Mode:vmin count:11 time in last mode(msec):0 time since last mode(sec):359 actual last sleep(msec):110000
能够dump出来完整详细的gpio/clk/pmic信息,排除休眠时候的状态异常。
adb logcat -v time > YearMounthDayHourMinute_logcat.txt //main log adb logcat -v time -b events > YearMounthDayHourMinute_logcat_event.txt //event log adb logcat -v time -b radio > YearMounthDayHourMinute_logcat_radio.txt //radio log adb shell dmesg > YearMounthDayHourMinute_dmesg.txt //kernel log
能够采用功耗问题时间追踪表来精确追踪功耗异常。
可使用以下命令来打开指定文件的kernel log(以qpnp-adc-tm.c和qpnp-adc-common.c为例):
adb shell mount -t debugfs none /sys/kernel/debug adb shell "echo 8 > /proc/sys/kernel/printk" adb shell "echo 'file qpnp-adc-tm.c +p' > /sys/kernel/debug/dynamic_debug/control" adb shell "echo 'file qpnp-adc-common.c +p' > /sys/kernel/debug/dynamic_debug/control" adb shell "echo 8 > /proc/sys/kernel/printk"
为指定的函数开启log,以qpnpint_handle_irq为例:
adb shell "echo 'func qpnpint_handle_irq +p' > /sys/kernel/debug/dynamic_debug/control"
#logkit#调出logkit apk,能够保存logcat、dmesg、crash、QXDM、GPU log等日志信息到手机里面。
经过top命令,能够查询到cpu占用较高的应用。若是一个应用一直在占用cpu,而此时并无打开该应用,那么该应用极可能会致使待机异常。
adb shell top
“该场景下CPU使用率”是User+System+IOW+IRQ
“模块相关的CPU占用率”是模块相关进程占用CPU使用率的总和
设置-->应用-->正在运行,能够看到正在运行的应用或者服务。禁止掉应用或者服务,观察待机电流变化。
调试wakeup问题,可使能debug功能,而后抓取log。Log中会增长一些debug信息。
mount -t debugfs none /sys/kernel/debug echo 1 > /sys/kernel/debug/clk/debug_suspend echo 1 > /sys/module/msm_show_resume_irq/parameters/debug_mask echo 4 > /sys/module/wakelock/parameters/debug_mask echo 1 > /sys/module/lpm_levels/parameters/debug_mask echo 0x16 > /sys/module/smd/parameters/debug_mask
一、wakeup_sources
kernel wakelock和userspace wakelock都有可能阻止系统睡眠。全部的wakeup_sources均保存在sys节点/sys/kernel/debug/wakeup_sources里面。
该文件包含了以下信息:
(1)the total amount of time a wakeup source has prevented suspend
(2)the amount of time a wakelock has been active since the last activation etc. The unit of time is milliseconds.
二、active_since
active_since值能够用来确认wakelock是否正在阻止休眠。若是该值不是零,那么这个wakelock正在工做而且阻止休眠。
三、获取wakeup_sources的命令
adb root 67754400 adb remount adb shell cat /sys/kernel/debug/wakeup_sources > /data/wakeup_sources.txt adb pull /data/wakeup_sources.txt
得到wakeup_sources.txt之后,经过Excel打开,active_since不为0的项为wakeup source。以表2为例,msm_dwc3对应的active-since值481756>0,这意味着msm_dwc3驱动在阻止系统睡眠,下一步须要检查msm_dwc3驱动代码及相关log。
表格 2 Wakeup source opened in Excel
四、power:wakeup_source_activate and power:wakeup_source_deactivate events
当一个wakeup source被acquire或者release时候,power:wakeup_source_activate和power:wakeup_source_deactivate event将随即被写到trace buffer里面,这样能够记录wakeup source被driver使用的频率。
开启该功能的方法:
echo "power:wakeup_source_activate power:wakeup_source_deactivate" > /sys/kernel/debug/tracing/set_event The power:wakeup_source_activate and power:wakeup_source_deactivate events are written to the trace buffer any time a wakeup source is acquired or released and it can provide information on how often a wakeup source is being used by a driver. To enable these events, you can enable following: echo "power:wakeup_source_activate power:wakeup_source_deactivate" > /sys/kernel/debug/tracing/set_event Once the above done, the traces will be present in /sys/kernel/debug/tracing/trace.
powertop用来看CPU的运行统计以协助调试power问题。powertop的用法以下:
powertop --h Usage: powertop [OPTION...] n -d, --dump read wakeups once and print list of top offenders n -t, --time=DOUBLE default time to gather data in seconds n -r, --reset Reset PM stats data n -h, --help Show this help message n -v, --version Show version information and exit
获取powertop log的方法:
经过USB链接手机到电脑
adb shell,而后执行以下命令:
sleep 10 && /data/powertop [-r] -d -t 30 > /data/powertop.log &
拔掉USB线,等待10秒后开始功耗测试
插上USB
adb pull /data/powertop.log
打开CPU freq change log:
mount -t debugfs none /sys/kernel/debug cd /sys/kernel/debug echo -n 'file acpuclock-8x60.c +p' > dynamic_debug/control echo -n 'file acpuclock-krait.c +p' > dynamic_debug/control
查看cpu freq stats:
cat /sys/devices/system/cpu/cpu0/cpufreq/stats cat /sys/devices/system/cpu/cpu1/cpufreq/stats cat /sys/devices/system/cpu/cpu2/cpufreq/stats cat /sys/devices/system/cpu/cpu3/cpufreq/stats
To lock cpu freg:
echo the same freq to following sys mode will lock cpu freq to the setting freq. /sys/devices/system/cpu/cpu0/cpufreq/scaling_max_freq /sys/devices/system/cpu/cpu0/cpufreq/scaling_min_freq
To enable/disable specific freq for ACPU
ACPU freq table is defined in acpu_freq_tbl_* structure of specific platform. arch/arm/mach-msm/acpuclock-.c For 8974, it is defined in arch/arm/mach-msm/acpuclock-8974.c. the first column of following table used to enable/disable freq in the row: 1:enable, 0:disable static struct acpu_level acpu_freq_tbl_2p3g_pvs0[] __initdata = { { 1, { 300000, PLL_0, 0, 0 }, L2(0), 800000, 72 }, { 0, { 345600, HFPLL, 2, 36 }, L2(1), 800000, 83 }, { 1, { 422400, HFPLL, 2, 44 }, L2(2), 800000, 101 }, { 0, { 499200, HFPLL, 2, 52 }, L2(2), 805000, 120 }, { 0, { 576000, HFPLL, 1, 30 }, L2(3), 815000, 139 }, { 1, { 652800, HFPLL, 1, 34 }, L2(3), 825000, 159 }, { 1, { 729600, HFPLL, 1, 38 }, L2(4), 835000, 180 }, { 0, { 806400, HFPLL, 1, 42 }, L2(4), 845000, 200 }, { 1, { 883200, HFPLL, 1, 46 }, L2(4), 855000, 221 }, { 1, { 960000, HFPLL, 1, 50 }, L2(9), 865000, 242 }, { 1, { 1036800, HFPLL, 1, 54 }, L2(10), 875000, 264 }, { 0, { 1113600, HFPLL, 1, 58 }, L2(10), 890000, 287 }, { 1, { 1190400, HFPLL, 1, 62 }, L2(10), 900000, 308 }, … { 1, { 1958400, HFPLL, 1, 102 }, L2(19), 1040000, 565 }, { 0, { 2035200, HFPLL, 1, 106 }, L2(19), 1055000, 596 }, { 0, { 2112000, HFPLL, 1, 110 }, L2(19), 1070000, 627 }, { 0, { 2188800, HFPLL, 1, 114 }, L2(19), 1085000, 659 }, { 1, { 2265600, HFPLL, 1, 118 }, L2(19), 1100000, 691 }, { 0, { 0 } } };
Core 0 can’t be hotplugged, Core 1/2/3 can be hotplugged,
To remove core :
echo 0 > /sys/devices/system/cpu/cpu1/online echo 0 > /sys/devices/system/cpu/cpu2/online echo 0 > /sys/devices/system/cpu/cpu3/online
To add back core:
echo 1 > /sys/devices/system/cpu/cpu1/online echo 1 > /sys/devices/system/cpu/cpu2/online echo 1 > /sys/devices/system/cpu/cpu3/online
To check scaling governor:
cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor
To set new governor:
好比:
echo ondemand > /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor
Use Mpdecison daemon to start/stop/enable debug with commands below:
Start mpdecison: start mpdecision n Stop mpdecison: stop mpdecision Enable mpdecision debug : start mpdecision --debug
Following sys node can be used to enable the lower resource,
echo 2 > /sys/module/lpm_resources/enable_low_power/l2 echo 1 > /sys/module/lpm_resources/enable_low_power/pxo echo 1 > /sys/module/lpm_resources/enable_low_power/vdd_dig echo 1 > /sys/module/lpm_resources/enable_low_power/vdd_mem echo 1 > /sys/module/pm_8x60/modes/cpu0/power_collapse/suspend_enabled echo 1 > /sys/module/pm_8x60/modes/cpu1/power_collapse/suspend_enabled echo 1 > /sys/module/pm_8x60/modes/cpu2/power_collapse/suspend_enabled echo 1 > /sys/module/pm_8x60/modes/cpu3/power_collapse/suspend_enabled echo 1 > /sys/module/pm_8x60/modes/cpu0/power_collapse/idle_enabled echo 1 > /sys/module/pm_8x60/modes/cpu0/standalone_power_collapse/suspend_enabled echo 1 > /sys/module/pm_8x60/modes/cpu1/standalone_power_collapse/suspend_enabled echo 1 > /sys/module/pm_8x60/modes/cpu2/standalone_power_collapse/suspend_enabled echo 1 > /sys/module/pm_8x60/modes/cpu3/standalone_power_collapse/suspend_enabled echo 1 > /sys/module/pm_8x60/modes/cpu0/standalone_power_collapse/idle_enabled echo 1 > /sys/module/pm_8x60/modes/cpu1/standalone_power_collapse/idle_enabled echo 1 > /sys/module/pm_8x60/modes/cpu2/standalone_power_collapse/idle_enabled echo 1 > /sys/module/pm_8x60/modes/cpu3/standalone_power_collapse/idle_enabled echo 0 to above sys node will disable related low power mode.
get android alarms and statistics: adb dumpsys alarm > alarms.txt enable android debug message in logcat: setprop persist.alarm.debug 1
Sys node /proc/timer_stats can be used to check kernel timer stastics, customer can use following command to get timer statics in specific scenario:
echo 0 > /proc/timer_stats && sleep 10 && echo 1 > /proc/timer_stats && sleep 30 && cat /proc/timer_stats > /data/timer_stats &
OEMs need to provide file /data/timer_stats to salesforce case for check.
屏幕亮度等级不一样,功耗不一样。亮度越低,功耗越低。调低屏幕默认背光亮度等级和屏幕最高亮度设置时候的背光亮度等级,能够优化手机总体功耗表现。
LCD背光等级的设备节点:
/sys/class/leds/lcd-backlight/brightness
默认背光等级和最高亮度背光等级须要同时考虑到用户体验和功耗表现,须要一块儿评估。
另外,调试LCD的fps帧率,也能够优化功耗。
CPU/GPU的动态调频调压能够优化手机的功耗表现。该影响是总体性的,系统性的。
CPU降频主要经过两种方式实现,均可以达到降频的目标。
一、设置CPU工做在powersave模式。设置该模式后,CPU将一直工做在最低频率(300000hz)。此时手机最省电,可是有可能会出现手机运行变卡顿。
例如:将CPU0置为powersave模式,命令为:
echo "powersave" > /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor
例如:将CPU1置为powersave模式,命令为:
echo "powersave" > /sys/devices/system/cpu/cpu1/cpufreq/scaling_governor
ex780共有4个CPU(CPU0~CPU3),均可以这样处理
二、限制CPU最高频率,以限制CPU的运行频率上限
CPU(CPU0~CPU3)能够选择的频率值以下所列,即这些数值均可以用做CPU的频率上限。选择的频率上限能够根据实际场景须要来设置。在超级省电模式下,CPU工做的宗旨是:CPU工做频率低+运行不卡,两项都要保障。
CPU能够选择的频率:
300000 422400 652800 729600 883200 960000 1036800 1190400 1267200 1497600 1574400 1728000 1958400 2265600 2457600
例如:将CPU0的频率上限设置为960000
echo 960000 > /sys/devices/system/cpu/cpu0/cpufreq/scaling_max_freq
例如:将CPU0的频率上限设置为422400
echo 422400 > /sys/devices/system/cpu/cpu0/cpufreq/scaling_max_freq
GPU相关调试与CPU相似,设备节点路径/sys/devices/fdb00000.qcom,kgsl-3d0/kgsl/kgsl-3d0
应用对cpu的占有率,若是占有率太高,则该应用通常会致使功耗较大。
adb shell top -m 6
能够从下面几个方面优化:
下降屏幕背光亮度等级;
采用CPU、GPU动态调频调压,并调低CPU、GPU频率下限;
采用thermal-engine.conf 。
下降camera帧率;
下降屏幕背光亮度等级;
采用CPU、GPU动态调频调压,并调低CPU、GPU频率下限;
采用thermal-engine.conf 。