因为spark将breeze进行了wrapper使用其提供的线性代数等功能,但为了避免影响其程序的稳定性,以及后期对Breeze的替换。于是在MLlib外部,以及用户本身使用时,java
不能将SDV与BDV进行互转换(toBreeze, fromBreeze)apache
-- 封装互转函数以下app
import breeze.linalg._ import breeze.linalg.{DenseVector => BDV} import org.apache.spark.mllib.linalg.Vectors import org.apache.spark.mllib.linalg.{DenseVector => SDV} import org.apache.spark.{SparkConf, SparkContext} import org.apache.spark.mllib.optimization.L1Updater object lr_testing { def SDV2BDV(vector: SDV): BDV[Double] = { new BDV(vector.values) } def BDV2SDV(vector: BDV[Double]): SDV = { new SDV(vector.data) } def main(args: Array[String]): Unit = { val sc = new SparkContext(new SparkConf().setAppName("testing").setMaster("local")) val w = new SDV(Array(1.0, 2.0, 3.0)) val g = new SDV(Array(0.0, 1.0, 1.0)) //此处将SDV转换为BDV能够进行进一步计算! axpy(2.0, SDV2BDV(w), SDV2BDV(g)) println(g) } }