最近为了解决Spark2.1的Bug,对Spark的源码作了很多修改,须要对修改的代码作编译测试,若是编译整个Spark项目快的话,也得半小时左右,因此基本上是改了哪一个子项目就单独对那个项目编译打包。html
Spark官方已经给出了如何使用mvn单独编译子项目的方法:http://spark.apache.org/docs/latest/building-spark.html#building-submodules-individuallyjava
使用mvn单独编译子项目是节约了很多时间。可是频繁的改动项目,每次用mvn编译仍是挺耗时间的。git
以前看官方文档提到,对于开发者,为了提升效率,推荐使用sbt编译。因而,又查了下文档资料:http://spark.apache.org/developer-tools.htmlsql
咦,看到:Running Build Targets For Individual Projects,内容以下:docker
$ # sbt $ build/sbt package $ # Maven $ build/mvn package -DskipTests -pl assembly
这不是坑么,虽然没怎么用sbt编译过Spark,可是sbt俺仍是用过的。build/sbt package
明明是编译整个项目的好吧,这哪是编译子项目啊。apache
翻遍官方全部跟编译有关的资料,无果。oop
最后,研究了下Spark的sbt定义,也就是下project/SparkBuild.scala
文件,找到了使用sbt编译子项目的方法。测试
下面是对spark-core从新编译打包的方法,咱们须要使用REPL模式,大体的流程以下:ui
➜ spark git:(branch-2.1.0) ✗ ./build/sbt -Pyarn -Phadoop-2.6 -Phive ... [info] Set current project to spark-parent (in build file:/Users/stan/Projects/spark/) > project core [info] Set current project to spark-core (in build file:/Users/stan/Projects/spark/) > package [info] Updating {file:/Users/stan/Projects/spark/}tags... [info] Resolving jline#jline;2.12.1 ... ... [info] Packaging /Users/stan/Projects/spark/core/target/scala-2.11/spark-core_2.11-2.1.0.jar ... [info] Done packaging. [success] Total time: 213 s, completed 2017-2-15 16:58:15
最后将spark-core_2.11-2.1.0.jar
替换到jars
或者assembly/target/scala-2.11/jars
目录下就能够了。spa
选择的子项目的关键是project
命令,如何知道有哪些定义好的子项目呢?这个还得参考project/SparkBuild.scala
中BuildCommons的定义:
object BuildCommons { private val buildLocation = file(".").getAbsoluteFile.getParentFile val sqlProjects@Seq(catalyst, sql, hive, hiveThriftServer, sqlKafka010) = Seq( "catalyst", "sql", "hive", "hive-thriftserver", "sql-kafka-0-10" ).map(ProjectRef(buildLocation, _)) val streamingProjects@Seq( streaming, streamingFlumeSink, streamingFlume, streamingKafka, streamingKafka010 ) = Seq( "streaming", "streaming-flume-sink", "streaming-flume", "streaming-kafka-0-8", "streaming-kafka-0-10" ).map(ProjectRef(buildLocation, _)) val allProjects@Seq( core, graphx, mllib, mllibLocal, repl, networkCommon, networkShuffle, launcher, unsafe, tags, sketch, _* ) = Seq( "core", "graphx", "mllib", "mllib-local", "repl", "network-common", "network-shuffle", "launcher", "unsafe", "tags", "sketch" ).map(ProjectRef(buildLocation, _)) ++ sqlProjects ++ streamingProjects val optionallyEnabledProjects@Seq(mesos, yarn, java8Tests, sparkGangliaLgpl, streamingKinesisAsl, dockerIntegrationTests) = Seq("mesos", "yarn", "java8-tests", "ganglia-lgpl", "streaming-kinesis-asl", "docker-integration-tests").map(ProjectRef(buildLocation, _)) val assemblyProjects@Seq(networkYarn, streamingFlumeAssembly, streamingKafkaAssembly, streamingKafka010Assembly, streamingKinesisAslAssembly) = Seq("network-yarn", "streaming-flume-assembly", "streaming-kafka-0-8-assembly", "streaming-kafka-0-10-assembly", "streaming-kinesis-asl-assembly") .map(ProjectRef(buildLocation, _)) val copyJarsProjects@Seq(assembly, examples) = Seq("assembly", "examples") .map(ProjectRef(buildLocation, _)) val tools = ProjectRef(buildLocation, "tools") // Root project. val spark = ProjectRef(buildLocation, "spark") val sparkHome = buildLocation val testTempDir = s"$sparkHome/target/tmp" val javacJVMVersion = settingKey[String]("source and target JVM version for javac") val scalacJVMVersion = settingKey[String]("source and target JVM version for scalac") }
咱们看下这个例子:
val sqlProjects@Seq(catalyst, sql, hive, hiveThriftServer, sqlKafka010) = Seq( "catalyst", "sql", "hive", "hive-thriftserver", "sql-kafka-0-10" ).map(ProjectRef(buildLocation, _))
这是对sql项目定义的子项目,有:catalyst, sql, hive, hive-thriftserver, sql-kafka-0-10
。
咱们若是须要编译catalyst这个项目,只须要进入sbt:project catalyst
选择catalyst项目就能够了,后面使用的compile、package等命令都是针对这个项目的。
多谢知乎@凤凰木的评论,还有一种非REPL的编译方式,好比要编译hive项目,咱们能够直接在Spark源码目录下执行build/sbt hive/package
示例:build/sbt "~catalyst/test-only *FoldablePropagationSuite"
对catalyst项目执行测试,只测试FoldablePropagationSuite结尾的类。
~
是对开发很是有用的东西,他表示进行持续测试,若是咱们执行测试后发现case没有过,那么能够在不退出测试的状况下,直接去修改代码,保存代码后,sbt会再次执行测试。
若是须要对一个子项目执行测试,只须要执行:build/sbt sql/test
(对sql项目作测试)。
这下能够爽爽的编译Spark了。
还有一些有用的编译技巧,去参考http://spark.apache.org/developer-tools.html就能够了。