Author: Lijbhtml
HBase是一个分布式的、面向列的开源数据库,该技术来源于 Fay Chang 所撰写的Google论文“Bigtable:一个结构化数据的分布式存储系统”。就像Bigtable利用了Google文件系统(File System)所提供的分布式数据存储同样,HBase在Hadoop之上提供了相似于Bigtable的能力。HBase是Apache的Hadoop项目的子项目。HBase不一样于通常的关系数据库,它是一个适合于非结构化数据存储的数据库。另外一个不一样的是HBase基于列的而不是基于行的模式。java
Hbase和HDFS之间关系?node
由于HDFS文件系统虽然支持海量数据存储,可是不擅长对单条记录作高效的管理(查询、修改、删除,增长)不支持对海量数据作随机读写。HBase是构建在HDFS上的一款NoSQL数据库,实现了对HDFS上的数据的高效管理,可以实现对海量数据的随机读写,实现行级别数据管理。shell
HBase数据库特色数据库
行存储和列存储apache
行存储centos
列存储数组
HBase环境搭建bash
确保hadoop能正常运行(HDFS),必须配置 HADOOP_HOME架构
安装zookeeper(管理hbase服务)
[root@CentOS ~]# tar -zxf zookeeper-3.4.6.tar.gz -C /usr/ [root@CentOS ~]# vi /usr/zookeeper-3.4.6/conf/zoo.cfg tickTime=2000 dataDir=/root/zkdata clientPort=2181 [root@CentOS ~]# mkdir /root/zkdata [root@CentOS zookeeper-3.4.6]# ./bin/zkServer.sh start zoo.cfg JMX enabled by default Using config: /usr/zookeeper-3.4.6/bin/../conf/zoo.cfg Starting zookeeper ... STARTED [root@CentOS zookeeper-3.4.6]# ./bin/zkServer.sh status zoo.cfg JMX enabled by default Using config: /usr/zookeeper-3.4.6/bin/../conf/zoo.cfg Mode: standalone [root@centos ~]# jps 1612 SecondaryNameNode 1348 NameNode 1742 QuorumPeerMain //zookeeper 1437 DataNode
安装HBase
[root@centos ~]# tar -zxf hbase-1.2.4-bin.tar.gz -C /usr/ [root@centos ~]# vi /usr/hbase-1.2.4/conf/hbase-site.xml
<property> <name>hbase.rootdir</name> <value>hdfs://CentOS:9000/hbase</value> </property> <property> <name>hbase.cluster.distributed</name> <value>true</value> </property> <property> <name>hbase.zookeeper.quorum</name> <value>CentOS</value> </property> <property> <name>hbase.zookeeper.property.clientPort</name> <value>2181</value> </property> [root@centos ~]# vi /usr/hbase-1.2.4/conf/regionservers
centos
[root@centos ~]# vi .bashrc
HBASE_MANAGES_ZK=false HBASE_HOME=/usr/hbase-1.2.4 HADOOP_HOME=/usr/hadoop-2.6.0 JAVA_HOME=/usr/java/latest CLASSPATH=. PATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$HBASE_HOME/bin export JAVA_HOME export CLASSPATH export PATH export HADOOP_HOME export HBASE_HOME export HBASE_MANAGES_ZK
启动HBase
[root@centos ~]# start-hbase.sh [root@centos ~]# jps 1612 SecondaryNameNode 2102 HRegionServer //负责实际表数据的读写操做 1348 NameNode 2365 Jps 1978 HMaster //相似namenode管理表相关元数据、管理ResgionServer 1742 QuorumPeerMain 1437 DataNode
能够访问:http://centos:16010
HBase Shell命令
链接Hbase
[root@centos ~]# hbase shell SLF4J: Class path contains multiple SLF4J bindings. SLF4J: Found binding in [jar:file:/usr/hbase-1.2.4/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: Found binding in [jar:file:/usr/hadoop-2.6.0/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation. SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory] HBase Shell; enter 'help<RETURN>' for list of supported commands. Type "exit<RETURN>" to leave the HBase Shell Version 1.2.4, rUnknown, Wed Feb 15 18:58:00 CST 2017
hbase(main):001:0>
查看系统状态
hbase(main):001:0> status 1 active master, 0 backup masters, 1 servers, 0 dead, 2.0000 average load
查看当前系统版本
hbase(main):006:0> version 1.2.4, rUnknown, Wed Feb 15 18:58:00 CST 2017
namespace操做(数据库)
查看系统数据库
hbase(main):003:0> list_namespace NAMESPACE default
hbase
建立namespace
hbase(main):006:0> create_namespace 'baizhi',{'author'=>'zs'} 0 row(s) in 0.3260 seconds
查看namespace的表
hbase(main):004:0> list_namespace_tables 'hbase' TABLE
meta
namespace
查看建库详情
hbase(main):008:0> describe_namespace 'baizhi' DESCRIPTION
{NAME => 'baizhi', author => 'zs'} 1 row(s) in 0.0550 seconds
修改namespace
hbase(main):010:0> alter_namespace 'baizhi',{METHOD => 'set','author'=> 'wangwu'} 0 row(s) in 0.2520 seconds hbase(main):011:0> describe_namespace 'baizhi' DESCRIPTION
{NAME => 'baizhi', author => 'wangwu'} 1 row(s) in 0.0030 seconds hbase(main):012:0> alter_namespace 'baizhi',{METHOD => 'unset',NAME => 'author'} 0 row(s) in 0.0550 seconds hbase(main):013:0> describe_namespace 'baizhi' DESCRIPTION
{NAME => 'baizhi'}
1 row(s) in 0.0080 seconds
删除namespace
hbase(main):020:0> drop_namespace 'baizhi' 0 row(s) in 0.0730 seconds
HBase不容许删除有表的数据库
table相关操做(DDL操做)
建立表
hbase(main):023:0> create 't_user','cf1','cf2' 0 row(s) in 1.2880 seconds
=> Hbase::Table - t_user hbase(main):024:0> create 'baizhi:t_user',{NAME=>'cf1',VERSIONS=>3},{NAME=>'cf2',TTL=>3600} 0 row(s) in 1.2610 seconds
=> Hbase::Table - baizhi:t_user
查看建表详情
hbase(main):026:0> describe 'baizhi:t_user' Table baizhi:t_user is ENABLED
baizhi:t_user
COLUMN FAMILIES DESCRIPTION
{NAME => 'cf1', DATA_BLOCK_ENCODING => 'NONE', BLOOMFILTER => 'ROW', REPLICATION_SCOPE => '0', VERSIONS => '3', COMPRESSION =
'NONE', MIN_VERSIONS => '0', TTL => 'FOREVER', KEEP_DELETED_CELLS => 'FALSE', BLOCKSIZE => '65536', IN_MEMORY => 'false', B LOCKCACHE => 'true'}
{NAME => 'cf2', DATA_BLOCK_ENCODING => 'NONE', BLOOMFILTER => 'ROW', REPLICATION_SCOPE => '0', VERSIONS => '1', COMPRESSION = 'NONE', MIN_VERSIONS => '0', TTL => '3600 SECONDS (1 HOUR)', KEEP_DELETED_CELLS => 'FALSE', BLOCKSIZE => '65536', IN_MEMORY => 'false', BLOCKCACHE => 'true'}
2 row(s) in 0.0240 seconds
判断表是否存在
hbase(main):030:0> exists 't_user' Table t_user does exist
0 row(s) in 0.0250 seconds
enable/is_enabled/enable_all (相似disable、disable_all、is_disabled)
hbase(main):036:0> enable 't_user' 0 row(s) in 0.0220 seconds
hbase(main):037:0> is_enabled 't_user' true
0 row(s) in 0.0090 seconds hbase(main):035:0> enable_all 't_.*' t_user
Enable the above 1 tables (y/n)? y 1 tables successfully enabled
drop表
hbase(main):038:0> disable 't_user' 0 row(s) in 2.2930 seconds
hbase(main):039:0> drop 't_user' 0 row(s) in 1.2670 seconds
展现全部用户表(没法查看系统表hbase下的表)
hbase(main):042:0> list 'baizhi:.*' TABLE
baizhi:t_user
1 row(s) in 0.0050 seconds
=> ["baizhi:t_user"] hbase(main):043:0> list TABLE
baizhi:t_user
1 row(s) in 0.0050 seconds
获取一个表的引用
hbase(main):002:0> t=get_table 'baizhi:t_user' 0 row(s) in 0.0440 seconds
修改表参数
hbase(main):008:0> alter 'baizhi:t_user',{ NAME => 'cf2', TTL => 60 } Updating all regions with the new schema... 1/1 regions updated. Done. 0 row(s) in 2.7000 seconds
表的DML操做
Put指令
hbase(main):010:0> put 'baizhi:t_user',1,'cf1:name','zhangsan' 0 row(s) in 0.2060 seconds
hbase(main):011:0> t = get_table 'baizhi:t_user' 0 row(s) in 0.0010 seconds
hbase(main):012:0> t.put 1,'cf1:age','18' 0 row(s) in 0.0500 seconds
Get指令
hbase(main):017:0> get 'baizhi:t_user',1 COLUMN CELL
cf1:age timestamp=1536996547967, value=21
cf1:name timestamp=1536996337398, value=zhangsan
2 row(s) in 0.0680 seconds hbase(main):019:0> get 'baizhi:t_user',1,{COLUMN =>'cf1', VERSIONS=>10} COLUMN CELL
cf1:age timestamp=1536996547967, value=21 cf1:age timestamp=1536996542980, value=20 cf1:age timestamp=1536996375890, value=18 cf1:name timestamp=1536996337398, value=zhangsan 4 row(s) in 0.0440 seconds
hbase(main):020:0> get 'baizhi:t_user',1,{COLUMN =>'cf1:age', VERSIONS=>10} COLUMN CELL
cf1:age timestamp=1536996547967, value=21 cf1:age timestamp=1536996542980, value=20 cf1:age timestamp=1536996375890, value=18
3 row(s) in 0.0760 seconds
hbase(main):021:0> get 'baizhi:t_user',1,{COLUMN =>'cf1:age', TIMESTAMP => 1536996542980 } COLUMN CELL cf1:age timestamp=1536996542980, value=20
1 row(s) in 0.0260 seconds
hbase(main):025:0> get 'baizhi:t_user',1,{TIMERANGE => [1536996375890,1536996547967]} COLUMN CELL
cf1:age timestamp=1536996542980, value=20 1 row(s) in 0.0480 seconds
hbase(main):026:0> get 'baizhi:t_user',1,{TIMERANGE => [1536996375890,1536996547967],VERSIONS=>10} COLUMN CELL cf1:age timestamp=1536996542980, value=20 cf1:age timestamp=1536996375890, value=18 2 row(s) in 0.0160 seconds
scan
hbase(main):004:0> scan 'baizhi:t_user' ROW COLUMN+CELL
1 column=cf1:age, timestamp=1536996547967, value=21 1 column=cf1:height, timestamp=1536997284682, value=170 1 column=cf1:name, timestamp=1536996337398, value=zhangsan 1 column=cf1:salary, timestamp=1536997158586, value=15000
1 column=cf1:weight, timestamp=1536997311001, value=\x00\x00\x00\x00\x00\x00\x00\x05
2 column=cf1:age, timestamp=1536997566506, value=18 2 column=cf1:name, timestamp=1536997556491, value=lisi
2 row(s) in 0.0470 seconds hbase(main):009:0> scan 'baizhi:t_user', {STARTROW => '1',LIMIT=>1} ROW COLUMN+CELL 1 column=cf1:age, timestamp=1536996547967, value=21 1 column=cf1:height, timestamp=1536997284682, value=170 1 column=cf1:name, timestamp=1536996337398, value=zhangsan 1 column=cf1:salary, timestamp=1536997158586, value=15000 1 column=cf1:weight, timestamp=1536997311001, value=\x00\x00\x00\x00\x00\x00\x00\x05
1 row(s) in 0.0280 seconds
hbase(main):011:0> scan 'baizhi:t_user', {COLUMNS=>'cf1:age',TIMESTAMP=>1536996542980} ROW COLUMN+CELL 1 column=cf1:age, timestamp=1536996542980, value=20 1 row(s) in 0.0330 seconds
delete/deleteall
hbase(main):013:0> scan 'baizhi:t_user', {COLUMNS=>'cf1:age',VERSIONS=>3} ROW COLUMN+CELL
1 column=cf1:age, timestamp=1536996547967, value=21 1 column=cf1:age, timestamp=1536996542980, value=20 1 column=cf1:age, timestamp=1536996375890, value=18 2 column=cf1:age, timestamp=1536997566506, value=18
2 row(s) in 0.0150 seconds
hbase(main):014:0> delete 'baizhi:t_user',1,'cf1:age',1536996542980 0 row(s) in 0.0920 seconds
hbase(main):015:0> scan 'baizhi:t_user', {COLUMNS=>'cf1:age',VERSIONS=>3} ROW COLUMN+CELL 1 column=cf1:age, timestamp=1536996547967, value=21 2 column=cf1:age, timestamp=1536997566506, value=18
2 row(s) in 0.0140 seconds
hbase(main):016:0> delete 'baizhi:t_user',1,'cf1:age' 0 row(s) in 0.0170 seconds
hbase(main):017:0> scan 'baizhi:t_user', {COLUMNS=>'cf1:age',VERSIONS=>3} ROW COLUMN+CELL
2 column=cf1:age, timestamp=1536997566506, value=18
1 row(s) in 0.0170 seconds
hbase(main):019:0> deleteall 'baizhi:t_user',1 0 row(s) in 0.0200 seconds
hbase(main):020:0> get 'baizhi:t_user',1 COLUMN CELL 0 row(s) in 0.0200 seconds
truncate
hbase(main):022:0> truncate 'baizhi:t_user' Truncating 'baizhi:t_user' table (it may take a while):
HBase java API
maven依赖
<dependency> <groupId>org.apache.hbase</groupId> <artifactId>hbase-client</artifactId> <version>1.2.4</version> </dependency> <dependency> <groupId>org.apache.hbase</groupId> <artifactId>hbase-common</artifactId> <version>1.2.4</version> </dependency> <dependency> <groupId>org.apache.hbase</groupId> <artifactId>hbase-protocol</artifactId> <version>1.2.4</version> </dependency> <dependency> <groupId>org.apache.hbase</groupId> <artifactId>hbase-server</artifactId> <version>1.2.4</version> </dependency>
建立Connection和Admin对象
private Connection conn; private Admin admin; @Before public void before() throws IOException { Configuration config= HBaseConfiguration.create(); //由于HMaster和HRegionServer都将信息注册在zookeeper中 config.set("hbase.zookeeper.quorum","centos"); conn= ConnectionFactory.createConnection(config);
admin=conn.getAdmin();
} @After public void after() throws IOException { admin.close(); conn.close(); }
建立Namespace
NamespaceDescriptor nd=NamespaceDescriptor.create("zpark") .addConfiguration("author","zhangsan") .build(); admin.createNamespace(nd);
建立表
//create 'zpark:t_user',{NAME=>'cf1',VERIONS=>3},,{NAME=>'cf2',TTL=>10} TableName tname=TableName.valueOf("zpark:t_user"); //建立表的描述 HTableDescriptor t_user=new HTableDescriptor(tname);
//构建列簇 HColumnDescriptor cf1=new HColumnDescriptor("cf1"); cf1.setMaxVersions(3);
HColumnDescriptor cf2=new HColumnDescriptor("cf2"); cf2.setTimeToLive(10);
//添加列簇 t_user.addFamily(cf1); t_user.addFamily(cf2);
admin.createTable(t_user);
插入数据
TableName tname=TableName.valueOf("zpark:t_user"); Table t_user = conn.getTable(tname);
String[] company={"www.baizhi.com","www.sina.com"}; for(int i=0;i<1000;i++){ String com=company[new Random().nextInt(2)]; String rowKey=com; if(i<10){ rowKey+=":00"+i; }else if(i<100){ rowKey+=":0"+i; }else if(i<1000){ rowKey+=":"+i; } Put put=new Put(rowKey.getBytes()); put.addColumn("cf1".getBytes(),"name".getBytes(),("user"+i).getBytes()); put.addColumn("cf1".getBytes(),"age".getBytes(), Bytes.toBytes(i)); put.addColumn("cf1".getBytes(),"salary".getBytes(),Bytes.toBytes(5000+1000*i)); put.addColumn("cf1".getBytes(),"company".getBytes(),com.getBytes());
t_user.put(put);
} t_user.close();
批量插入
TableName tname=TableName.valueOf("zpark:t_user"); String[] company={"www.baizhi.com","www.sina.com"}; BufferedMutator mutator=conn.getBufferedMutator(tname); for(int i=0;i<1000;i++){ String com=company[new Random().nextInt(2)]; String rowKey=com; if(i<10){ rowKey+=":00"+i; }else if(i<100){ rowKey+=":0"+i; }else if(i<1000){ rowKey+=":"+i; } Put put=new Put(rowKey.getBytes()); put.addColumn("cf1".getBytes(),"name".getBytes(),("user"+i).getBytes()); put.addColumn("cf1".getBytes(),"age".getBytes(), Bytes.toBytes(i)); put.addColumn("cf1".getBytes(),"salary".getBytes(),Bytes.toBytes(5000+1000*i)); put.addColumn("cf1".getBytes(),"company".getBytes(),com.getBytes()); mutator.mutate(put); } mutator.close(); mutator.close();
修改数据
TableName tname=TableName.valueOf("zpark:t_user"); Table t_user = conn.getTable(tname);
Put put=new Put("www.baizhi.com:000".getBytes()); put.addColumn("cf1".getBytes(),"name".getBytes(),("zhangsan").getBytes());
t_user.put(put); t_user.close();
查询一条记录
TableName tname=TableName.valueOf("zpark:t_user"); Table t_user = conn.getTable(tname);
Get get=new Get("www.sina.com:002".getBytes()); //表示一行数据,涵盖n个cell Result result = t_user.get(get);
String name = Bytes.toString(result.getValue("cf1".getBytes(), "name".getBytes())); Integer age = Bytes.toInt(result.getValue("cf1".getBytes(), "age".getBytes())); Integer salary = Bytes.toInt(result.getValue("cf1".getBytes(), "salary".getBytes())); System.out.println(name+","+age+","+salary);
t_user.close();
查询多条
TableName tname=TableName.valueOf("zpark:t_user"); Table t_user = conn.getTable(tname);
Scan scan=new Scan(); // scan.setStartRow("www.baizhi.com:000".getBytes()); // scan.setStopRow("www.taizhi.com:020".getBytes()); Filter filter1=new PrefixFilter("www.baizhi.com:00".getBytes()); Filter filter2=new PrefixFilter("www.sina.com:00".getBytes()); FilterList filter=new FilterList(FilterList.Operator.MUST_PASS_ONE,filter1,filter2); scan.setFilter(filter);
ResultScanner resultScanner = t_user.getScanner(scan); for (Result result : resultScanner) { String rowKey=Bytes.toString(result.getRow()); String name = Bytes.toString(result.getValue("cf1".getBytes(), "name".getBytes())); Integer age = Bytes.toInt(result.getValue("cf1".getBytes(), "age".getBytes())); Integer salary = Bytes.toInt(result.getValue("cf1".getBytes(), "salary".getBytes())); System.out.println(rowKey+" => "+ name+","+age+","+salary); } t_user.close();
查询多条+Filter
TableName tname=TableName.valueOf("zpark:t_user"); Table t_user = conn.getTable(tname);
Scan scan=new Scan(); // scan.setStartRow("www.baizhi.com:000".getBytes()); // scan.setStopRow("www.taizhi.com:020".getBytes()); Filter filter1=new PrefixFilter("www.baizhi.com:00".getBytes()); Filter filter2=new PrefixFilter("www.sina.com:00".getBytes()); FilterList filter=new FilterList(FilterList.Operator.MUST_PASS_ALL,filter1,filter2); scan.setFilter(filter);
ResultScanner resultScanner = t_user.getScanner(scan); for (Result result : resultScanner) { String rowKey=Bytes.toString(result.getRow()); String name = Bytes.toString(result.getValue("cf1".getBytes(), "name".getBytes())); Integer age = Bytes.toInt(result.getValue("cf1".getBytes(), "age".getBytes())); Integer salary = Bytes.toInt(result.getValue("cf1".getBytes(), "salary".getBytes())); System.out.println(rowKey+" => "+ name+","+age+","+salary); } t_user.close();
HBase和MapReduce集成
public class CustomJobSubmiter extends Configured implements Tool { public int run(String[] args) throws Exception { //建立Job Configuration config = HBaseConfiguration.create(getConf()); Job job = Job.getInstance(config); job.setJarByClass(CustomJobSubmiter.class); // class that contains mapper //设置输入、输出格式 job.setInputFormatClass(TableInputFormat.class); job.setOutputFormatClass(TableOutputFormat.class); TableMapReduceUtil.initTableMapperJob( "zpark:t_user", new Scan(), UserMapper.class, Text.class, DoubleWritable.class, job ); TableMapReduceUtil.initTableReducerJob( "zpark:t_user_count", UserReducer.class, job ); job.setCombinerClass(UserCombiner.class); job.waitForCompletion(true); return 0; } public static void main(String[] args) throws Exception { ToolRunner.run(new CustomJobSubmiter(),args); } public static class UserMapper extends TableMapper<Text, CountWritable>{ private Text k=new Text(); private DoubleWritable v=new DoubleWritable(); @Override protected void map(ImmutableBytesWritable key, Result value, Context context) throws IOException, InterruptedException { String company= Bytes.toString(value.getValue("cf1".getBytes(),"company".getBytes())); Double salary= Bytes.toInt(value.getValue("cf1".getBytes(),"salary".getBytes()))*1.0; k.set(company); v.set(salary); context.write(k,new CountWritable(1,salary,salary,salary)); } } public static class UserCombiner extends Reducer<Text, CountWritable,Text, CountWritable>{ @Override protected void reduce(Text key, Iterable<CountWritable> values, Context context) throws IOException, InterruptedException { int total=0; double tatalSalary=0.0; double avgSalary=0.0; double maxSalary=0.0; double minSalary=Integer.MAX_VALUE; for (CountWritable value : values) { tatalSalary+=value.getTatalSalary(); total+=value.getTotal(); if(minSalary>value.getMinSalary()){ minSalary=value.getMinSalary(); } if(maxSalary<value.getMaxSalary()){ maxSalary=value.getMaxSalary(); } } context.write(key,new CountWritable(total,tatalSalary,maxSalary,minSalary)); } } public static class UserReducer extends TableReducer<Text, CountWritable, NullWritable>{ @Override protected void reduce(Text key, Iterable<CountWritable> values, Context context) throws IOException, InterruptedException { int total=0; double tatalSalary=0.0; double avgSalary=0.0; double maxSalary=0.0; double minSalary=Integer.MAX_VALUE; for (CountWritable value : values) { tatalSalary+=value.getTatalSalary(); total+=value.getTotal(); if(minSalary>value.getMinSalary()){ minSalary=value.getMinSalary(); } if(maxSalary<value.getMaxSalary()){ maxSalary=value.getMaxSalary(); } } avgSalary=tatalSalary/total; Put put=new Put(key.getBytes()); put.addColumn("cf1".getBytes(),"taotal".getBytes(),(total+"").getBytes()); put.addColumn("cf1".getBytes(),"tatalSalary".getBytes(),(tatalSalary+"").getBytes()); put.addColumn("cf1".getBytes(),"maxSalary".getBytes(),(maxSalary+"").getBytes()); put.addColumn("cf1".getBytes(),"minSalary".getBytes(),(minSalary+"").getBytes()); put.addColumn("cf1".getBytes(),"avgSalary".getBytes(),(avgSalary+"").getBytes()); context.write(null,put); } } } public class CountWritable implements Writable { int total=0; double tatalSalary=0.0; double maxSalary=0.0; double minSalary=Integer.MAX_VALUE; public CountWritable(int total, double tatalSalary, double maxSalary, double minSalary) { this.total = total; this.tatalSalary = tatalSalary; this.maxSalary = maxSalary; this.minSalary = minSalary; } public CountWritable() { } public void write(DataOutput out) throws IOException { out.writeInt(total); out.writeDouble(tatalSalary); out.writeDouble(maxSalary); out.writeDouble(minSalary); } public void readFields(DataInput in) throws IOException { total=in.readInt(); tatalSalary=in.readDouble(); maxSalary=in.readDouble(); minSalary=in.readDouble(); } //.... }
HBase架构
HBase宏观架构
RegionServer架构
Region架构图
参考:http://www.blogjava.net/DLevin/archive/2015/08/22/426877.html
http://www.blogjava.net/DLevin/archive/2015/08/22/426950.html
HBase集群构建
确保HDFS正常运行(HDFS - HA)
配置安装HBase
[root@CentOSX ~]# tar -zxf hbase-1.2.4-bin.tar.gz -C /usr/ [root@CentOSX ~]# vi /usr/hbase-1.2.4/conf/hbase-site.xml
<property> <name>hbase.rootdir</name> <value>hdfs://mycluster/hbase</value> </property> <property> <name>hbase.cluster.distributed</name> <value>true</value> </property> <property> <name>hbase.zookeeper.quorum</name> <value>CentOSA,CentOSB,CentOSC</value> </property> <property> <name>hbase.zookeeper.property.clientPort</name> <value>2181</value> </property> [root@centos ~]# vi /usr/hbase-1.2.4/conf/regionservers CentOSA CentOSB CentOSC [root@CentOSX ~]# vi .bashrc HBASE_MANAGES_ZK=false HBASE_HOME=/usr/hbase-1.2.4 HADOOP_HOME=/usr/hadoop-2.6.0 JAVA_HOME=/usr/java/latest CLASSPATH=. PATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$HBASE_HOME/bin export JAVA_HOME export CLASSPATH export PATH export HADOOP_HOME export HBASE_HOME export HBASE_MANAGES_ZK
[root@CentOSX ~]# source .bashrc
启动HBase [root@CentOSX ~]# hbase-daemon.sh start master [root@CentOSX ~]# hbase-daemon.sh start regionserver