(转)http://blog.csdn.net/skyflying2012/article/details/43771179linux
最近在作将kernel由小端处理器(arm)向大端处理器(ppc)的移植的工做,如今kernel进入console稳定工做,基本工做已经完成,不过移植中有不少心得仍是须要总结下,今天先将kernel对于大小端字节序的处理来总结下。redis
以前写过大小端字节序的思考,文章连接地址:http://blog.csdn.NET/skyflying2012/article/details/42065427。并发
根据以前的理解,字节序能够认为是处理器主观的概念,就像人如何去看待事物同样,处理器分大端和小端,对于内存的读写,只要保证数据类型一致,就不存在字节序的问题。app
所以我感受,字节序不一样形成的最大差别在于对于寄存器的读写。由于外设寄存器都是小端的(根据kernel代码得出结论,下面还会在详细解释)函数
根据我以前字节序思考的文章,对于寄存器读写差别,有2种方案:性能
(1)从硬件上解决这个问题,对于32位cpu,将32根数据总线反接,可是这样对于寻址小于32位数据可能有问题,而且不能全部模块都反接(如内存),这还涉及到编译器的问题。ui
(2)从软件上解决这个问题,在底层读写寄存器函数中,将读/写的数据进行swap。this
做为软件人员,我最关心第二种方案是否可行,由于在读写寄存器时对数据进行swap,增长了寄存器读写的复杂度,原来一条存储/加载指令能够完成的工做,如今可能须要增长一些更swap相关的指令,没法保证寄存器操做的原子性了。对于高性能,大并发的系统,可能形成竞态。spa
所以用最少的指令完成数据swap和r/w寄存器,才能保证Linux系统正常稳定运行。.net
在移植bootloader中我是将数据进行位移来完成swap,因bootloader单进程,不会存在竞态问题。
在kernel移植时很担忧这个问题,可是发现kernel下已经提供了大小端处理器操做寄存器时的通用函数,就是readl/writel(以操做32位寄存器为例)。
对于driver的开发者不须要关心处理器的字节序,寄存器操做直接使用readl/writel便可。
网上有不少文章提到readl/writel,可是没有具体分析其实现。
今天就主要来分析下readl/writel如何实现高效的数据swap和寄存器读写。咱们就以readl为例,针对big-endian处理器,如何来对寄存器数据进行处理。
kernel下readl定义以下,在include/asm-generic/io.h
- #define readl(addr) __le32_to_cpu(__raw_readl(addr))
__raw_readl是最底层的寄存器读写函数,很简单,就从直接获取寄存器数据。来看__le32_to_cpu的实现,该函数针对字节序有不一样的实现,对于小端处理器,在./include/linux/byteorder/little_endian.h中,以下:
- #define __le32_to_cpu(x) ((__force __u32)(__le32)(x))
至关于什么都没作。而对于大端处理器,在./include/linux/byteorder/big_endian.h中,以下:
- #define __le32_to_cpu(x) __swab32((__force __u32)(__le32)(x))
看字面意思也能够看出,__swab32实现数据翻转。等下咱们就来分析__swab32的实现,精髓就在这个函数。
可是这以前先考虑一个问题,对于不一样CPU,如arm mips ppc,怎么来选择使用little_endian.h仍是big_endian.h的呢。
答案是,针对不一样处理器平台,有arch/xxx/include/asm/byteorder.h头文件,来看下arm mips ppc的byteorder.h分别是什么。
arch/arm/include/asm/byteorder.h
- * arch/arm/include/asm/byteorder.h
- *
- * ARM Endian-ness. In little endian mode, the data bus is connected such
- * that byte accesses appear as:
- * 0 = d0...d7, 1 = d8...d15, 2 = d16...d23, 3 = d24...d31
- * and word accesses (data or instruction) appear as:
- * d0...d31
- *
- * When in big endian mode, byte accesses appear as:
- * 0 = d24...d31, 1 = d16...d23, 2 = d8...d15, 3 = d0...d7
- * and word accesses (data or instruction) appear as:
- * d0...d31
- */
- #ifndef __ASM_ARM_BYTEORDER_H
- #define __ASM_ARM_BYTEORDER_H
-
- #ifdef __ARMEB__
- #include <linux/byteorder/big_endian.h>
- #else
- #include <linux/byteorder/little_endian.h>
- #endif
-
- #endif
arch/mips/include/asm/byteorder.h
- /*
- * This file is subject to the terms and conditions of the GNU General Public
- * License. See the file "COPYING" in the main directory of this archive
- * for more details.
- *
- * Copyright (C) 1996, 99, 2003 by Ralf Baechle
- */
- #ifndef _ASM_BYTEORDER_H
- #define _ASM_BYTEORDER_H
-
- #if defined(__MIPSEB__)
- #include <linux/byteorder/big_endian.h>
- #elif defined(__MIPSEL__)
- #include <linux/byteorder/little_endian.h>
- #else
- # error "MIPS, but neither __MIPSEB__, nor __MIPSEL__???"
- #endif
-
- #endif /* _ASM_BYTEORDER_H */
arch/powerpc/include/asm/byteorder.h
- #ifndef _ASM_POWERPC_BYTEORDER_H
- #define _ASM_POWERPC_BYTEORDER_H
-
- /*
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version
- * 2 of the License, or (at your option) any later version.
- */
- #include <linux/byteorder/big_endian.h>
-
- #endif /* _ASM_POWERPC_BYTEORDER_H */
能够看出arm mips在kernel下大小端都支持,arm mips也的确是能够选择处理器字节序。ppc仅支持big-endian。(其实ppc也是支持选择字节序的)
各个处理器平台的byteorder.h将littlie_endian.h/big_endian.h又包了一层,咱们在编写driver时不须要关心处理器的字节序,只须要包含byteorder.h便可。
接下来看下最关键的__swab32函数,以下:
在include/linux/swab.h中
- /**
- * __swab32 - return a byteswapped 32-bit value
- * @x: value to byteswap
- */
- #define __swab32(x) \
- (__builtin_constant_p((__u32)(x)) ? \
- ___constant_swab32(x) : \
- __fswab32(x))
宏定义展开,是一个条件判断符。
__builtin_constant_p是一个gcc的内建函数, 用于判断一个值在编译时是不是常数,若是参数是常数,函数返回 1,不然返回 0。
若是数据是常数,则__constant_swab32,实现以下:
- #define ___constant_swab32(x) ((__u32)( \
- (((__u32)(x) & (__u32)0x000000ffUL) << 24) | \
- (((__u32)(x) & (__u32)0x0000ff00UL) << 8) | \
- (((__u32)(x) & (__u32)0x00ff0000UL) >> 8) | \
- (((__u32)(x) & (__u32)0xff000000UL) >> 24)))
对于常数数据,采用的是普通的位移而后拼接的方法,对于常数,这样的消耗是有必要的(这是kernel的解释,不是很理解)
若是数据是运行时计算数据,则使用__fswab32,实现以下:
- static inline __attribute_const__ __u32 __fswab32(__u32 val)
- {
- #ifdef __arch_swab32
- return __arch_swab32(val);
- #else
- return ___constant_swab32(val);
- #endif
- }
若是未定义__arch_swab32,则仍是采用__constant_swab32方法翻转数据,可是arm mips ppc都定义了各自平台的__arch_swab32,来实现一个针对本身平台的高效的swap,分别定义以下:
arch/arm/include/asm/swab.h
- static inline __attribute_const__ __u32 __arch_swab32(__u32 x)
- {
- __asm__ ("rev %0, %1" : "=r" (x) : "r" (x));
- return x;
- }
arch/mips/include/asm/swab.h
- static inline __attribute_const__ __u32 __arch_swab32(__u32 x)
- {
- __asm__(
- " wsbh %0, %1 \n"
- " rotr %0, %0, 16 \n"
- : "=r" (x)
- : "r" (x));
-
- return x;
- }
arch/powerpc/include/asm/swab.h
- static inline __attribute_const__ __u32 __arch_swab32(__u32 value)
- {
- __u32 result;
-
- __asm__("rlwimi %0,%1,24,16,23\n\t"
- "rlwimi %0,%1,8,8,15\n\t"
- "rlwimi %0,%1,24,0,7"
- : "=r" (result)
- : "r" (value), "0" (value >> 24));
- return result;
- }
能够看出,arm使用1条指令(rev数据翻转指令),mips使用2条指令(wsbh rotr数据交换指令),ppc使用3条指令(rlwimi数据位移指令),来完成了32 bit数据的翻转。这相对于普通的位移拼接的方法要高效的多!
其实从函数名__fswab也能够看出是要实现fast swap的。
咱们反过来思考下,kernel针对小端处理器的寄存器读写数据没有作任何处理,而对于大端处理器却作了swap,这也说明了外设寄存器数据排布是小端字节序的。